Supporting Information for:

Designing a Green-Emitting Viscosity-Sensitive 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) Probe for Plasma Membrane Viscosity Imaging

Artūras Polita,^a Milda Stancikaitė,^b Rokas Žvirblis,^c Karolina Maleckaitė,^b Jelena Dodonova-Vaitkūnienė,^d Sigitas Tumkevičius,^d Arun Prabha Shivabalan^a and Gintaras Valinčius^a

^a Life Sciences Center, Institute of Biochemistry, Vilnius University, Saulėtekio av. 7, Vilnius, LT-10257, Lithuania. E-mail: arturas.polita@gmc.vu.lt.

^{b.} Center of Physical Sciences and Technology, Saulėtekio av. 3, Vilnius, LT-10257, Lithuania.

^c Life Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, Vilnius, LT-10257, Lithuania.

^d Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, Vilnius, LT-03225, Lithuania.

Table of Contents

Table S1	Precise biexponential intensity-weighted fluorescence lifetimes of BODIPY-PM in
	toluene-castor oil mixtures at room temperature.
Table S2	Precise fluorescence lifetimes of BODIPY-PM in water-glycerol mixtures at room
	temperature.
Table S3	Precise fluorescence lifetimes of BODIPY-PM in methanol-glycerol mixtures at
	room temperature.
Figure S1	BODIPY-PM absorption, steady-state and time-resolved fluorescence spectra in
	cyclohexane, toluene, methanol and glycerol.
Figure S2	BODIPY-PM absorption, steady-state and time-resolved fluorescence spectra in
	toluene-castor oil mixtures.
Figure S3	Biexponential intensity-weighted fluorescence lifetimes of BODIPY-PM in
	toluene-castor oil mixtures, starting from toluene-castor oil 20% and finishing
	with pure castor oil.
Figure S4	BODIPY-PM absorption, steady-state and time-resolved fluorescence spectra in
	water-glycerol mixtures.
Figure S5	Fluorescence lifetimes of BODIPY-PM in water-glycerol mixtures, starting from
	pure water and finishing with pure glycerol.
Figure S6	BODIPY-PM absorption, steady-state and time-resolved fluorescence spectra in
	methanol-glycerol mixtures.
Figure S7	Fluorescence lifetimes of BODIPY-PM in methanol-glycerol mixtures, starting
	from pure methanol and finishing with pure glycerol.
Figure S8	Time-resolved fluorescence decays of BODIPY-PM in different lipid order LUVs.
Figure S9	Steady-state and time-resolved fluorescence decays of BODIPY-PM in LUVs with
	different Nal quencher concentrations.
Figure S10	Birghtfiled microscopy of lung cancer cells stained with BODIPY-PM.
Figure S11	Synthesis of BODIPY-PM.
Figure S12	¹ H NMR spectrum of BODIPY-PM.
Figure S13	¹³ C NMR spectrum of BODIPY-PM.
Figure S14	¹⁹ F NMR spectrum of BODIPY-PM.
Figure S15	¹¹ B NMR spectrum of BODIPY-PM.
Figure S16	Mass spectrum of BODIPY-PM.

BODIPY-PM absorption, steady-state and time-resolved fluorescence spectra in cyclohexane, toluene, methanol and glycerol

Figure S1. (A) Absorption spectrum of BODIPY-PM in cyclohexane, toluene, methanol and glycerol. (B) Relative steady-state fluorescence spectra of BODIPY-PM in cyclohexane, toluene, methanol and glycerol. (C) Normalized steady-state fluorescence spectra of BODIPY-PM in cyclohexane, toluene, methanol and glycerol. (D) Time-resolved fluorescence decays of BODIPY-PM in cyclohexane, toluene, methanol and glycerol.

BODIPY-PM is not completely dissolved in very non-polar solvents, such as cyclohexane and toluene and additional red bands appear in the steady-state fluorescence spectra, indicating characteristic BODIPY aggregation (Fig. S1). In addition, the fluorescence decays of BODIPY-PM in cyclohexane and toluene become longer and biexponential, in contrast to monoexponential decays in methanol, water or DMSO. BODIPY-PM absorption, steady-state and time-resolved fluorescence spectra in toluene-castor oil mixtures

Figure S2. (A) Absorption spectra of BODIPY-PM dissolved in toluene-castor oil mixtures. (B) Normalized steady-state fluorescence spectra of BODIPY-PM in toluene-castor oil mixtures. (C) Relative steady-state fluorescence spectra of BODIPY-PM in toluene-castor oil mixtures. (D) Time-resolved fluorescence decays of BODIPY-PM in toluene-castor oil mixtures.

BODIPY-PM was dissolved at 1 μ M concentration in pure toluene and toluene-castor oil mixtures. As evident from the steady-state fluorescence spectra, BODIPY-PM is not fully solvated in pure toluene and characteristic red band appears, indicating dye aggregation (Fig. S2, B). Even upon further dye dilution at 0.5 μ M concentration, the dye still remains undissolved (Fig. S2, B, Toluene diluted). Upon BODIPY-PM aggregation, fluorescence lifetimes increase to about 500 ps (Fig. S2, D). Finally, BODIPY-PM fluorescence intensity (Fig. S2, C) and fluorescence lifetimes increase with increase in viscosity of toluene-castor oil mixtures. Precise toluene-castor oil viscosity values and the fluorescence lifetimes of BODIPY-PM in these mixtures are presented in the Table S1 and Figure S3. As BODIPY-PM aggregates in the pure toluene, only the mixtures from toluene-castor oil 20% to pure castor oil were used for the fluorescence lifetime calibration. The fluorescence decays in toluene-castor oil mixtures were biexponential and intensity-weighted lifetimes were calculated.

	Intensity-weighted	
Viscosity, cP	fluorescence lifetime τ, ps	Composition
1.21	490	Toluene-Castor oil 20%
4.86	737	Toluene-Castor oil 40%
20.18	1316	Toluene-Castor oil 60%
104.46	2234	Toluene-Castor oil 80%
304.265	2708	Toluene-Castor oil 90%
919.19	3725	Castor oil

Table S1. Precise biexponential intensity-weighted fluorescence lifetimes of BODIPY-PM in toluene-castor oil mixtures at room temperature.

Figure S3. Biexponential intensity-weighted fluorescence lifetimes of BODIPY-PM in toluene-castor oil mixtures, starting from toluene-castor oil 20% and finishing with pure castor oil.

BODIPY-PM absorption, steady-state and time-resolved fluorescence spectra in water-glycerol mixtures

Figure S4. (A) Absorption spectra of BODIPY-PM dissolved in water-glycerol mixtures. (B) Normalized steady-state fluorescence spectra of BODIPY-PM in water-glycerol mixtures. (C) Relative steady-state fluorescence spectra of BODIPY-PM in water-glycerol mixtures. (D) Time-resolved fluorescence decays of BODIPY-PM in water-glycerol mixtures.

BODIPY-PM was dissolved at 1 μ M concentration water-glycerol mixtures, starting from pure water and ending up with pure glycerol. Water-glycerol mixtures fully solvate BODIPY-PM and fluorescence intensity along with fluorescence lifetimes increase with increase in viscosity of the mixture (Fig. S4, C, D). The fluorescence decays become biexponential upon reaching water-glycerol 60% composition and remain biexponential even in pure glycerol mixtures. Intensity-weighted fluorescence lifetimes were calculated for the biexponential decays. Precise water-glycerol viscosity values and the fluorescence lifetimes of BODIPY-PM in these mixtures are given in the Table S2 and Figure S5.

	Intensity-weighted	
Viscosity, cP	fluorescence lifetime τ, ps	Composition
1	264	Water
1.76	437	Water-Glycerol 20%
3.72	630	Water-Glycerol 40%
10.8	1272	Water-Glycerol 60%
22.5	1666	Water-Glycerol 70%
60.1	2699	Water-Glycerol 80%
219	3643	Water-Glycerol 90%
930	5127	Glycerol

Table S2. Precise fluorescence lifetimes of BODIPY-PM in water-glycerol mixtures at room temperature.

Figure S5. Fluorescence lifetimes of BODIPY-PM in water-glycerol mixtures (blue), starting from pure water and finishing with pure glycerol. Fluorescence lifetimes of BODIPY-PM in toluene-castor oil mixtures (green) are added for comparison.

BODIPY-PM absorption, steady-state and time-resolved fluorescence spectra in methanol-glycerol mixtures

Figure S6. (A) Absorption spectra of BODIPY-PM dissolved in methanol-glycerol mixtures. (B) Normalized steady-state fluorescence spectra of BODIPY-PM in methanol-glycerol mixtures. (C) Relative steady-state fluorescence spectra of BODIPY-PM in methanol-glycerol mixtures. (D) Time-resolved fluorescence decays of BODIPY-PM in methanol-glycerol mixtures.

BODIPY-PM was dissolved at 1 µM concentration methanol-glycerol mixtures, starting from pure methanol and ending up with pure glycerol. Methanol-glycerol mixtures readily dissolve BODIPY-PM and fluorescence intensities with fluorescence lifetimes increase with increase in viscosity of the mixture (Fig. S6). The fluorescence decays become biexponential upon reaching methanol-glycerol 60% composition and remain biexponential even in pure glycerol mixtures. Intensity-weighted fluorescence lifetimes were calculated for biexponential decays. Precise methanol-glycerol viscosity values and the fluorescence lifetimes of BODIPY-PM in these mixtures are given in the Table S3 and Figure S7.

	Intensity-weighted	
Viscosity, cP	fluorescence lifetime τ, ps	Composition
0.62	122	Methanol
2.913	245	Methanol-Glycerol 30%
5.418	321	Methanol-Glycerol 40%
23.886	785	Methanol-Glycerol 60%
54.176	1497	Methanol-Glycerol 70%
129.835	2226	Methanol-Glycerol 80%
345.33	3662	Methanol-Glycerol 90%
930	5127	Glycerol

 Table S3. Precise fluorescence lifetimes of BODIPY-PM in methanol-glycerol mixtures at room temperature.

Figure S7. Fluorescence lifetimes of BODIPY-PM in methanol-glycerol mixtures (magenta), starting from pure methanol and finishing with pure glycerol. Fluorescence lifetimes of BODIPY-PM in toluene-castor oil mixtures (green) and water-glycerol mixtures (blue) are added for comparison.

BODIPY-PM steady-state and time-resolved fluorescence spectra in Ld POPC, Lo DOPC/DPPC/Chol and Lo DOPC/BSM/Chol, and gel-phase DMPC and DPPC LUVs

LUVs with 100nm diameter were prepared with different lipid order compositions, ranging from Ld (POPC, DLPC), to Lo (DOPC/DPPC/Chol and DOPC/BSM/Chol), to gel-phase LUVs (DPPC and DMPC). BODIPY-PM to lipid ratio in LUVs was 1:600. In the gel-phase LUVs, fluorescence decays were shorter compared to the Lo phases, even though the lipid packaging density is higher in the gel-phase and the viscosity values in gel-phase should significantly suprass Lo phase. We hypothesized that BODIPY-PM is partially exposed to the aqeous solution in the gel-phase bilayers and is unable to measure correct viscosity values. To test this hypothesis we performed quenching experiments of Ld (POPC) and gel-phase (DMPC and DPPC) LUVs with NaI (Fig. S9).

Figure S9. Steady-state and time-resolved fluorescence decays of BODIPY-PM in LUVs with different Nal quencher concentrations. (A,B) Gel-phase DMPC LUVs. (C,D) Gel-phase DPPC LUVs. (E,F) Ld POPC LUVs.

LUVs with 100nm diameter were prepared with gel-phase (DPPC and DMPC) and Ld (POPC) compositions. BODIPY-PM to lipid ratio in LUVs was 1:600. Increase in Nal concentration almost unaffected fluorescence decays and intensities of Ld POPC LUVs (Fig. S9 E,F). On the other hand, fluorescence decays and intensities were significantly reduced in gel-phase DMPC and DPPC LUVs (Fig. S9). This result indicates, that BODIPY-PM is deeply burried in the fluid-phase bilayer and iodide ions are not able to access the probe, whereas in the gel-phase bilayer the BODIPY-PM is exposed to iodide ions and is easily quenched.

Birghtfiled microscopy of lung cancer cells stained with BODIPY-PM

Figure S10. (A) Brightfield image of A549 human lung cancer cells before addition of BODIPY-PM, the cells display normal morphology, scale bar is 200 μ m. (B) Brightfield image of A549 human lung cancer cells, stained with BODIPY-PM, after FLIM experiments. The cells show normal cancer cell morphology.

Lung cancer cells (A549) display normal cell morphology after being stained with 1 μ M concentration of BODIPY-PM in aqueous solution. We suppose, that BODIPY-PM is non-toxic to the cells at 1 μ M concentrations, which are sufficient to stain the cells. In addition, FLIM experiments did not change the morphology of the cells (Fig. S10).

Synthesis of BODIPY-PM and spectral identification

Figure S11. *Reagents and conditions*: (i) 10 eq. of neat pyrrole, 0.1 M HCl, CH₂Cl₂, argon, r.t., 24 h; (ii) 1.5 eq. DDQ, CH₂Cl₂, and then (iii) 7 eq. BF₃·(OEt₂)₂ and 7 eq. Et₃N, CH₂Cl₂, argon, 0 $^{\circ}$ \rightarrow r.t., darkness, 24 h; (iv) 2 eq. oxalyl chloride, 4 eq. K₂CO₃, drop of DMF, CH₂Cl₂, argon, r.t., 45 min; (v) 1.33 eq. 3-(dodecylammonio)propane-1-sulfonate, 1.33 eq. DIPEA, CH₂Cl₂, argon, r.t., 24 h.

Compounds **A**, **B** [1] and **C** [2] as well as 3-(dodecylammonio)propane-1-sulfonate [3] were preprared according to previously published procedures.

BODIPY-PM. Compound **C** (50 mg, 0.151 mmol) and 1.33 eq. of 3-(dodecylammonio)propane-1sulfonate (61.8 mg, 0.202 mmol) were dissolved in 2 mL of CH_2Cl_2 and 1.33 eq. of DIPEA (35.2 μ L, 2.49 mmol) was added. The mixture was degassed with argon and stirred for 24 hours at room temperature. The reaction progress was controlled using thin-layer chromatography. After the reaction was complete, the solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (eluent – CHCl₃:MeOH (9:1)).

BODIPY-PM. Orange-sticky solid, yield 86 mg (96%), mp 155-156 °C, ¹H NMR (400 MHZ, CDCl₃): δ (ppm) = 7.93 (s, 2H); 7.51 (m, 4H); 6.81 (m, 2H); 6.50 (d, *J* = 4 Hz, 2H); 3.83-3.51 (m, 2H); 3.23-3.11 (m, 2H); 2.26-2.04 (m, 2H); 1.30-1.00 (m, 22H); 0.86 (t, *J* = 8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 170.8; 145.8; 144.6; 138.6; 134.7; 134.6; 131.4; 130.5; 126.9; 118.9; 54.1; 50.6; 42.4; 31.9; 29.6; 29.6; 29.55; 29.3; 29.1; 28.7; 26.5; 22.6; 18.6; 17.4; 14.1. ¹¹B NMR (128.4 MHZ, CDCl₃): δ (ppm) = 0.20 (t, *J*_{B-F} = 28.2 Hz). ¹⁹F NMR (376.5 MHz, CDCl₃): δ (ppm) = -144.86 (dd, *J*_{F-F} = 56.5 Hz, *J*_{F-B} = 30.12 Hz). HRMS (ESI-TOF) m/z 602.3036 (C₃₁H₄₃BF₂N₃O₄S⁺ [M+2H]⁺, requires 602.3029).

Fig S13. ¹³C NMR spectrum of BODIPY-PM.

Fig S15. ¹¹B NMR spectrum of BODIPY-PM.

Mass Spectrometry (HPLC-MS) analysis

Fig S16. Mass spectrum of BODIPY-PM.

- G. Matvey, C. Ulyana, B. Natalia, K. Arkadiy, Synthesis and Optical Properties of BODIPY with Active Group on meso- Position, Lett. Org. Chem. 13 (2017) 718–725. https://doi.org/10.2174/1570178614666161118155955.
- [2] J. Pliquett, S. Amor, M. Ponce-Vargas, M. Laly, C. Racoeur, Y. Rousselin, F. Denat, A. Bettaïeb, P. Fleurat-Lessard, C. Paul, C. Goze, E. Bodio, Design of a multifunctionalizable BODIPY platform for the facile elaboration of a large series of gold(i)-based optical theranostics, Dalt. Trans. 47 (2018) 11203–11218. https://doi.org/10.1039/c8dt02364f.
- [3] D.I. Danylchuk, S. Moon, K. Xu, A.S. Klymchenko, Switchable Solvatochromic Probes for Live-Cell Super-resolution Imaging of Plasma Membrane Organization, Angew. Chemie Int. Ed. 58 (2019) 14920–14924. https://doi.org/10.1002/anie.201907690.