Supporting Information for Noble Metal-free Ternary Cobalt-Nickel Phosphides for Enhanced Photocatalytic Dye-Sensitized Hydrogen Evolution and Catalytic Mechanism Investigation

Zhixing Cheng†§, Yiqin Xu†, and Bin Fei*§

E-mail: zhixing.cheng@polyu.edu.hk, bin.fei@polyu.edu.hk

† Institute of Semiconductors, Guangdong Academy of Sciences, Guangzhou 510070,

P.R. China

§ School of Fashion & Textiles, The Hong Kong Polytechnic University, Hong Kong

100872, P.R. China

Table of Contents

- **1. Experimental Procedures**
- 2. Computational methodology

Supplementary illustrations and explanations

Scheme S1. The preparation process of phosphides: the synthesis of precursors using a mixture of Co and Ni salts and NaH₂PO₂ solution, followed by phosphide formation through annealing under an inert atmosphere.

Figure S1. Powder XRD pattern of as-prepared CoNi₃P. The mixed phases may contain NiP and Ni₅P₄.

Figure S2. The SEM images of the (a) CoP, (b) CoNiP, (c) Ni_2P and (d) $CoNi_3P$ samples.

Figure S3. The TEM and HRTEM images of (a, b) the CoP and (c, d) the CoNi₃P samples.

Figure S4. The elemental mapping images of (a) CoP, (b) Ni_2P and (c) $CoNi_3P$ samples.

Figure S5. The EDX patterns of (a) CoP, (b) CoNiP, (c) Ni₂P and (d) CoNi₃P samples.

Figure S6. The High-resolution XPS spectra of (a) Co 2p, (b) Ni 2p, (c) P 2p and (d) O 1s of CoNi₃P sample.

Figure S7. (a) The XRD pattern and (b) the SEM pattern of CoNiP sample after cycle stability test.

Figure S8. (a) The solid UV-Vis DRS and (b) the PL spectrum of CoP, Ni_2P , CoNiP and CoNi₃P samples.

Figure S9. The specific capacitance performances (CV) of CoP, CoNiP, CoNi₃P and Ni₂P samples.

Table S1. Comparison of recently reported earth-abundant metal catalysts forphotocatalytic Eosin-Y sensitized H_2 evolution reaction.

I. Experimental Procedures

1. Electrochemical measurements

The electrochemical tests are conducted on an electrochemical workstation (CHI760E, CH instrument) with a conventional three-electrode cell. A Pt plate (1cm × 1cm) is employed as the counter electrode and an Ag/AgCl (saturated KCl) electrode was used as the reference electrode. The working electrode is prepared on a glassy carbon electrode (GCE) with a diameter of 5 mm. The exposed area of the working electrode is 0.19625 cm². The GCE is polished with α -Al₂O₃ powder with decreasing sizes (1.0-0.05 µm), and it is then ultrasonically washed with deionized water and absolute ethanol before the samples were coated on it.

The electrode materials are prepared by dispersing 5 mg of the catalyst and 1 mL mixed solution, which is compounded by 25 μ L of Nafion solution, 250 μ L of ethanol and 750 μ L of water. The mixture was then sonicated for about 1 h at room temperature to form a homogeneous ink. 10 μ L of the ink (containing 0.05 mg of catalyst) was loaded onto the GCE, giving a loading mass of 0.25 mg cm⁻². The same procedure was used for all of the samples during their electrode preparation. The photocurrent measurements were carried out with the electrolyte and 1 M aqueous KOH (pH = 14). The electrochemical impedance spectroscopy (EIS) and cyclic voltammetry measurements are respectively performed in the solution by applying an AC voltage with -1.5 mV amplitude in a frequency range from 1 Hz to 100 kHz. The bias sweep range is from 0 to -0.9 V; the scanning rate of 0.1 V/s. The polarization curve is performed in the same solution with the bias sweep range from -1.4 to -1.8 V vs Ag/AgCl.

2. Computational methodology

The first-principles calculations are performed in the framework of the density functional theory with the projector augmented plane-wave method, as implemented in the Vienna ab initio simulation package.¹ The generalzied gradient approximation proposed by Perdew, Burke, and Ernzerhof is employed for the exchange-correlation

potential.² The long range van der Waals interaction is described by the DFT-D3 approach.³ The spin-polarized are considered in the calculations. The Ni₂P (111) surface containing 48 Ni atoms and 24 P atoms, the top two layers of Ni and P atoms are allowed to relax, while the bottom two layers of Ni and P atoms are fixed. The CoNiP (111) surface containing 24 Co atoms, 24 Ni atoms, and 24 P atoms, the top two layers of Co, Ni and P atoms are allowed to relax, while the bottom two relax, while the bottom two layers of Co, Ni and P atoms are allowed to relax, while the bottom two layers of Co, Ni and P atoms are allowed to relax, while the bottom two layers of Co, Ni and P atoms are allowed to relax, while the bottom two layers of Co, Ni and P atoms are fixed. The vacuum layers of 15 Å are added perpendicular to the slabs to avoid artificial interaction between periodic images. The cut-off energy for plane wave is set to 450 eV. The Brillouin zone integration is performed using a 1×1×1 k-mesh for the structural optimization, while a dense k-point mesh of 3×3×1 was used to calculate the density of states. The converged conditions for electronic and ionic optimizations are respectively chosen as 1×10⁻⁵ eV and 0.02 eV/Å.

II. Supplementary illustrations and explanations

Scheme S1. The preparation process of phosphides: the synthesis of precursors using a mixture of Co and Ni salts and NaH₂PO₂ solution, followed by phosphide formation through annealing under an inert atmosphere.

Figure S1. Powder XRD pattern of as-prepared $CoNi_3P$. The mixed phases may contain NiP and Ni_5P_4 .

Figure S2. The SEM images of the (a) CoP, (b) CoNiP, (c) Ni_2P and (d) $CoNi_3P$ samples.

Figure S3. The TEM and HRTEM images of (a, b) the CoP and (c, d) the CoNi₃P samples.

Figure S4. The elemental mapping images of (a) CoP, (b) Ni_2P and (c) $CoNi_3P$ samples.

Figure S5. The EDX patterns of (a) CoP, (b) CoNiP, (c) Ni₂P and (d) CoNi₃P samples.

Figure S6. The High-resolution XPS spectra of (a) Co 2p, (b) Ni 2p, (c) P 2p and (d) O 1s of CoNi₃P sample.

Figure S7. (a) The XRD pattern and (b) the SEM pattern of CoNiP sample after cycle stability test.

Figure S8. (a) The solid UV-Vis DRS and (b) the PL spectrum of CoP, Ni_2P , CoNiP and CoNi₃P samples.

Figure S9. The specific capacitance performances (CV) of CoP, CoNiP, CoNi₃P and Ni₂P samples.

Table	S1.	Comparison	of	recently	reported	earth-abundant	metal	catalysts	for	
photocatalytic Eosin-Y sensitized H ₂ evolution reaction.										

Catalyst	H ₂ evolution rate	Reactant solution	Ref.	
	(mmol g ⁻¹ h ⁻¹) (Cal)			
CoNiP	12.96	10% TEOA	This	
			work	
10%-MCC/M-S	3.9	15% TEOA	R ⁴	
Co-NCNT-800	14.7	10% TEOA	R ⁵	
CoS	1.2	5% TEOA	\mathbb{R}^6	
Cu _{2-x} Se	1.02	10.6% TEOA	R ⁷	
Ni@MOF-5	9.5	10% TEOA	R ⁸	
NiB/GO	6.5	10% TEOA	R ⁹	
Ni(OH) ₂ /TiO ₂	1.6	5% TEOA	R ¹⁰	
Ni ₂ P-FG	2.26	10% TEOA	R ¹¹	
Pt/C ₃ N ₄	0.5	5% TEOA	R ¹²	
Pt/ZnO	3.9	10% TEOA	R ¹³	

rGO/MOF/Co-	6.8	15% TEOA	R ¹⁴
Mo-S			
Sb doped SnO ₂	0.25	10% TEOA	R ¹⁵
Sn-doped	4.15	10% TEOA	R ¹⁶
ZnO/BiOCl			
W-Co ₃ S ₄	12.5	15% TEOA	R ¹⁷
UiO-66-NH ₂	2.76	10% TEOA	R ¹⁸

References

- 1 G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758.
- J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865– 3868.
- S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 4 T. Li, T. Yan and Z. Jin, *New J. Chem.*, 2021, **45**, 11905–11917.
- 5 X. Meng, Y. Dong, Q. Hu and Y. Ding, *ACS Sustain. Chem. Eng.*, 2019, 7, 1753–1759.
- M. Zheng, Y. Ding, L. Yu, X. Du and Y. Zhao, *Adv. Funct. Mater.*, 2017, 27, 1605846.
- H. Lim, I. Roh, J. Chung, J. Lee, J. W. Song and T. Yu, *J. Ind. Eng. Chem.*, 2023, 123, 81–87.
- 8 W. Zhen, J. Ma and G. Lu, *Appl. Catal. B Environ.*, 2016, **190**, 12–25.
- M. Q. Yang, J. Dan, S. J. Pennycook, X. Lu, H. Zhu, Q. H. Xu, H. J. Fan and G.
 W. Ho, *Mater. Horizons*, 2017, 4, 885–894.
- Z. Yan, X. Yu, Y. Zhang, H. Jia, Z. Sun and P. Du, *Appl. Catal. B Environ.*, 2014, 160–161, 173–178.
- S. H. Li, N. Zhang, X. Xie, R. Luque and Y. J. Xu, *Angew. Chem. Int. Ed.*, 2018, 57, 13082–13085.
- Y. Wang, J. Hong, W. Zhang and R. Xu, *Catal. Sci. Technol.*, 2013, 3, 1703–1711.
- D. Popugaeva, T. Tian and A. K. Ray, *Int. J. Hydrogen Energy*, 2020, 45, 11097–11107.
- 14 D. Liu, Z. Jin and Y. Bi, *Catal. Sci. Technol.*, 2017, 7, 4478–4488.
- 15 L. Yang, J. Huang, L. Shi, L. Cao, W. Zhou, K. Chang, X. Meng, G. Liu, Y. Jie and J. J. Ye, *Nano Energy*, 2017, **36**, 331–340.
- 16 Y. Guo, C. Qi, B. Lu and P. Li, Int. J. Hydrogen Energy, 2022, 47, 228–241.
- 17 H. Wang and Z. Jin, *Sustain. Energy Fuels*, 2019, **3**, 173–183.

18 J. Shi, F. Chen, L. Hou, G. Li, Y. Li, X. Guan, H. Liu and L. Guo, *Appl. Catal. B Environ.*, 2021, 280, 119385.