Supplementary Material

Sensitive detection of cadmium ion based on a quantum dots-mediated

fluorescent visualization sensor

Qiushuang Ai^a, Yifan Dong^a, Xiren Yu^a, Peiling Wei^b, Dawen Zhang^{*a}, Suyan Qiu^{a*}

^a MARA Key Laboratory for quality and safety control of poultry products, Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China.

^b Quality Standards Institute of Animal Husbandry, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, 830011, China.

* Corresponding author:

E-mail: zdw3296@163.com, qiusuyan@126.com

Fig. S1. TEM image of CQDs.

Fig. S2 High-resolution XPS spectrum of CdTe QDs in the S2p region.

Fig. S3. UV-vis absorption spectrum of CdTe QDs.

Fig. S4 The quenching effect of different quenching agents, where F_0 and F represent FL intensity of CdTe QDs in absence and presence of different species.

Fig. S5 The concentration effect of EDTA on the intensity of CQDs/CdTe QDs system in the absence(a) and presence(b) of Cd²⁺ (the inset showed the fluorescence intensity of CQDs(black)and CdTe QDs(red) under various concentration of EDTA).

Fig. S6 Fluorescence intensity of CQDs/CdTe QDs system with EDTA (20 μ M) under different etching time. The inset is the curve of F₂/F₁ versus etching time, where F₂ and F₁ represented FL intensity of CdTe QDs and CQDs, respectively.

Fig. S7 Fluorescence intensity of EDTA-etched CQDs/CdTe QDs system in the presence of Cd^{2+} (10 μ M) under different recovering time.

Fig. S8 The Cd 3d spectrum of EDTA-etched CdTe QDs before (a) and after (b) reacting with Cd²⁺.

Fig. S9. (a) Fluorescence spectra of CQDs/CdTe QDs system under different pH (the inset showed the fluorescence intensity of CQDs) (b) Fluorescence intensity of CdTe QDs around 630 nm in $absence(F_0)$ and presence(F) of Cd²⁺.

Fig. S10. Images of CQDs/CdTe QDs system under different volume ratio in the presence of different concentration of Cd²⁺ under 365 nm UV lamp (a) CQDs =0, (b) CQDs : CdTe QDs =1:1.5, (c) CQDs : CdTe QDs =1:25.

Name	Peak (eV)	Atomic (%)
S(2p)	162.02	17.14
C(1s)	284.99	60.54
O(1s)	351.19	1.12
Cd(3d)	404.91	18.2
Te(3d)	575.70	3.00

Table S1. Relative atomic percent of each element of CdTe QDs.

Table S2 Comparison of the sensing performance of some fluorescent sensors for Cd²⁺ detection.

Probe	Signal pattern	Linear range (µM)	LOD (µM)	With smartphone	Ref.
MPA–CdTe QDs	Single- emission	1.3–25	0.5	No	1
TGb–CdSe QDs	Single- emission	1.0–22	0.32	No	2
L-Cys–CdTe NPs	Single- emission	0.4–15.4	0.13	No	3
InP nanocrystals	Single- emission	0.2–10	0.11	No	4
N, P-CDs	Single- emission	0.5–12.5	0.16	No	5
CdTe@CdS QDs	Single- emission	0.05–9	0.032	No	6
GO/AuNCs	Dual- emission	0-50	0.033	Yes	7
CuNCs@SiO2- CdTe QDs	Dual- emission	0.09-18	0.01	Yes	8
CQDs/CdTe QDs	Dual- emission	0.1-23	0.018	Yes	This work

Samples	FL method (µM)	AAS method (μM)
GBW100348	4.28	4.06

Table S3. Comparison of the sensing performance of different methods for Cd²⁺ detection.

References

- 1. H. Xu, R. Miao, Z. Fang and X. Zhong, Anal. Chim. Acta, 2011, 687, 82-88.
- N. B. Brahim, N. B. H. Mohamed, M. Echabaane, M. Haouari, R. B. Chaâbane, M. Negrerie and H. B. Ouada, Sens. Actuators, B Chem., 2015, 220, 1346-1353.
- 3. L. Li, L. Liao, Y. Ding and H. Zeng, RSC Adv., 2017, 7, 10361-10368.
- 4. Y. Zhang, Z. Zhang, D. Yin, J. Li, R. Xie and W. Yang, ACS Appl. Mater. Inter., 2013, 5, 9709-9713.
- 5. L. Lin, Y. Wang, Y. Xiao and W. Liu, Microchim. Acta, 2019, 186, 147.
- 6. S. Wang, J. Zhu, X. Li, J. Li and J. Zhao, Spectrochim. Acta, Part A, 2018, 201, 119-127.
- 7. H. Wang, L. Da, L. Yang, S. Chu, F. Yang, S. Yu and C. Jiang, J. Hazard. Mater., 2020, 392, 122506.
- 8. W. Li, X. Zhang, X. Hu, Y. Shi, Z. Li, X. Huang, W. Zhang, D. Zhang, X. Zou and J. Shi, *J. Hazard. Mater.*, 2021, **408**, 124872.