Supporting Information

Synthesis of a 1-aza-2-phospha-acenaphtene complex profiting from coordination enabled chloromethane elimination

David Biskup,^a Tom Bergmann,^a Gregor Schnakenburg,^a Rosa M. Gomila,^b Antonio Frontera^b and Rainer Streubel*^a

^aInstitut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany. ^bDepartment of Chemistry, Universitat de les Illes Balears, crts de Valldemossa km 7.5, 07122 Palme de Mallorca (Baleares), Spain.

Table of contents

1	General methods	S2
2	Experimental procedures and characterisation	S4
3	NMR spectra	S6
4	X-ray diffraction studies	S16
5	Theoretical investigations	S22
6	References	S28

1 General methods

All reactions were performed under dried and deoxygenated argon atmosphere using Schlenk or glovebox techniques. The used argon (>99.998%) was purified by a system of three columns (deoxygenation by a BTS copper catalyst (BASF PuriStar[®] R3-15S) at ca. 100 °C, removing moisture with silica gel, phosphorus pentoxide desiccant with indicator (Sicapent[®]) and calcium chloride). Glassware, spatulae, cannulae as well as filter papers were dried in a compartment dryer at 110 °C for at least one hour. Additionally, the glassware was heated with a heat gun (up to 550 °C) under active vacuum (<0.02 mbar) and filled with argon three times. Sterile syringes were purged with argon three times before use. The solvents were dried by standard procedures¹ by refluxing over proper desiccants under an argon atmosphere (*n*-pentane, petroleum ether 40/65 and toluene over sodium wire ($\emptyset = 2 \text{ mm}$); diethyl ether stabilized with 3,5-di-tert-butyl-4-hydroxytoluene (BHT) and tetrahydrofuran over benzophenone and sodium wire) for several days and distilled before use. Alternatively, diethyl ether and toluene were dried using a MBraun SPS-800 solvent purification system. For filtration Schlenk frits or stainless steel cannulae (\emptyset = 1 mm and 2 mm) with Whatman^{*} glass microfiber filters (grade GF/B) were used. After use, devices made of stainless steel were cleaned with acetone, water and diluted hydrochloric acid and glassware by storage in a concentrated solution of potassium hydroxide in isopropanol for at least two days and in diluted hydrochloric acid for one day. Afterwards, the glassware was washed with water and soap, acetone and petroleum ether 40/65. All joints were greased with OKS 1112 grease or with PTFE paste (Carl Roth). Vacuum was applied by a rotary vane pump (vacuubrand RZ6) enabling pressures $<10^{-2}$ mbar.

NMR spectra were recorded on a Bruker Avance I 300 MHz, Bruker Avance I 400 MHz, Bruker Avance I 500 MHz or Bruker Avance III HD Ascend 500 MHz spectrometer at the NMR department of the University of Bonn and subsequently analyzed by the program *Mestrenova 14.2*. The calibration of the ¹H and ¹³C NMR spectra was done via the solvent residual signals relative to tetramethylsilane (<1% in CDCl₃) (C₆D₆: $\delta(^{1}H) = 7.16$ ppm and $\delta(^{13}C) = 128.06$ ppm).² All lock frequencies were calibrated internally against the ¹H signals of solutions of tetramethylsilane with a volume fraction of $\Phi \leq 1\%$ in the corresponding deuterated solvent. The used deuterated solvent C₆D₆ was dried over a potassium mirror, trap-to-trap recondensed and degassed by three freeze-pump-thaw cycles. The purified solvent was stored over 3 Å or 4 Å molecular sieves. The chemical shift (δ) is given in parts per million (ppm) and the coupling constant ($^{n}J_{X,Y}$) in Hertz (Hz) as absolute values neglecting the sign where *n* is the number of bonds between the coupling nuclei X and Y. For assigning the multiplicity following abbreviations were used: s = singlet, d = doublet, dd = doublet of doublets, m = multiplet, sat = satellites and br = broad. For ¹H NMR spectra additionally the number of nuclei is given accordingly which is determined via integration. The ¹H and ¹³C NMR signals of compounds were assigned by a combination of COSY, NOESY, HMQC and HMBC experiments to unequivocally assign protons and carbon

resonances if necessary. All measurements were performed at ambient temperature (298 K) if not stated otherwise.

Mass spectra using electron impact ionization (EI) were performed on a Thermo Finnigan MAT 95 XL sector field instrument using an ionization energy of 70 eV. The calibration and referencing were done using perfluorokerosene (PFK). Only selected data are given for detected ions. The peaks are given in mass-to-charge ratio (m/z) while only the isotopomer with the highest relative abundance is represented. Additionally, the relative intensities of the peaks are given in parentheses and the proposed molecule fragments in square brackets if not stated otherwise.

ATR-IR spectra of solids were recorded in the spectral range of 4000–400 cm⁻¹ on a Bruker Alpha FTIR spectrometer with a single-reflection ATR measurement attachment (Platinum-ATR Diamond) in a glovebox at ambient temperature. All analyses were performed using the programs *EZ OMNIC 7.3* of Fisher Scientific and *OPUS* of Bruker. Only selected wavenumbers of the absorption bands are given using reciprocal centimeters (cm⁻¹). The intensities of the bands are marked as very strong (vs), strong (s), medium (m), weak (w) or very weak (vw).

Elemental analyses were performed on a Elementar Vario Micro analysis device in quadruplicate or triplicate for each sample. All samples were prepared and weighed up in tin or silver sample containers using a micro-analytical balance in a glovebox. The mean C, H, N and S values are given for each compound.

Melting points were measured using an SRS DigiMelt device or a Büchi melting point determination device according to Dr. Tottoli. The samples were flame-sealed in a glass capillary (Ø = 0.1 mm) *in vacuo* (<0.02 mbar) and heated quickly (ca. 5 K/min) for a rough determination of the melting point or decomposition temperature. Afterwards, a heating rate of approximately 2 K/min was used until the sample melted or decomposed. The thermally treated samples were cooled to ambient temperature and studied by ¹H and/or ³¹P NMR spectroscopy to confirm whether decomposition had occurred. No internal or external temperature corrections were performed.

Single crystal X-ray diffraction analyses were performed on a STOE IPDS-2T diffractometer, equipped with a low-temperature device (Oxford Cryostream 700 series) at 123(2) K or 180(2) K by using graphite monochromated Mo-K α radiation (λ = 0.71073 Å). Intensities were measured by fine-slicing Φ and ω scans and corrected background, polarization and Lorentz effects. A semi-empirical absorption correction was applied for the data sets following Blessing's method.³ The structure was solved by direct methods and refined anisotropically by the least-squares procedure implemented in ShelX program system.⁴ All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were included isotropically refined using a riding model at the bound carbon atoms. The program *Olex2* 1.5⁵

S3

of *OlexSys* was used for analyses and the ellipsoid representations of the molecular structures with the probability level set to 50%. Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-2250016 (1), CCDC-2250017 (5) and CCDC-2250018 (6) which can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

2 Experimental procedures and characterisation

Compound 1

A solution of 4.209 g (16.75 mmol, 1.0 eq.) of 8-dimethylamino-1-naphtyllithium etherate⁶ in 80 mL of diethyl ether was added to a solution of 6.6 mL (75.45 mmol, 4.5 eq.) of trichlorophosphane in 80 mL of diethyl ether while stirring at -80 °C. The reaction mixture was slowly warmed up to ambient temperature and stirred for two days. The formed yellow suspension was filtered using a filter cannula, and the solid on the sinter was washed with diethyl ether (3× 20 mL). The filtrate and washings were combined and the solvent was removed *in vacuo* at ambient temperature to obtain a pale-yellow solid. The solid was further dried *in vacuo* at ambient temperature for 1 hour. The obtained analytical data were in accordance with literature.⁶ Yield: 4.37 g (16.1 mmol, 96%) (Lit.:⁶ 62%). ¹H NMR (400.13 MHz, 298 K, C₆D₆): δ / ppm = 9.12–6.76 (m, 6H; Ar-*H*), 2.15 (s, 6H; N(CH₃)₂). ³¹P{¹H} NMR (162.00 MHz, 298 K, C₆D₆): δ / ppm = 130.6 (s).

Compound 5

<u>Via [W(CO)₅(CH₂Cl₂)] (2b)</u>: A solution of 1.426 g (4.05 mmol, 1.1 eq.) of [W(CO)₆] in 240 mL of dichloromethane was photolyzed using a Hg vapor lamp at -65 °C for 1.5 hours. The generated [W(CO)₅(CH₂Cl₂)] (2b)⁷ solution was added *in situ* to 1.002 g (3.68 mmol, 1.0 eq.) of compound 1 and stirred for 4 hours at -65 °C. The reaction mixture was warmed up to ambient temperature and stirred for another 15 hours. The solvent was removed *in vacuo* at ambient temperature obtaining a black solid. The product was extracted with three times 15 mL of diethyl ether via a filter cannula. Subsequently, the solvents were removed *in vacuo* at ambient temperature. Diethyl ether (20 mL) was added and the resulting solution was filtered through silica gel (h = 1.5 cm, d = 2 cm) at -20 °C using diethyl ether. The volatiles were removed *in vacuo* at ambient temperature, the product was obtained as yellow solid with minor impurities of [W(CO)₆]. Yield: 0.12 g (0.22 mmol, 6%). <u>Via [W(CO)₅(CH₃CN)]</u> (<u>2c)</u>: A solution of 0.938 g (2.57 mmol, 1.2 eq.) [W(CO)₅(CH₃CN)] (<u>2c</u>)⁸ in 6 mL of toluene was added via transfer cannula to a suspension of 0.600 g (2.20 mmol, 1.0 eq.) of compound **1** in 14 mL of toluene at ambient temperature. The reaction mixture was stirred for 25 hours at 50 °C and another 114 hours at 70 °C. The obtained yellow supernatant and black solid were separated via filtration using a filter cannula at ambient temperature. All volatiles were

removed in vacuo at 40 °C. Afterwards, side products were removed via sublimation in vacuo at 45 °C. The raw product was further purified by filtration through dried silica gel (h = 1.5 cm, d = 2 cm) using diethyl ether at -20 °C. After removal of solvents in vacuo at ambient temperature, a yellow solid was obtained. Yield: 0.25 g (0.45 mmol, 20%). Mp 110-111 °C (dec.). Elemental analysis calcd (%) for C₁₆H₉NO₅PCIW: C 35.25, H 1.66, N 2.57; found: C 35.33, H 3.20, N 2.07. IR (ATR Diamond): v_{max} / cm⁻¹ = 1910 (s) (CO), 1993 (s) (CO), 2078 (m) (CO). ¹H NMR (500.04 MHz, 298 K, C₆D₆): δ / ppm = 7.70 (dd, ³*J*_{P,H} = 7.02 Hz, ³*J*_{H,H} = 6.99 Hz, 1H; C²-*H*), 7.44 (d, ³*J*_{H,H} = 8.21 Hz, 1H; C³-*H*), 7.17–7.03 (m, 3H; Ar-*H*), 6.16 (d, ${}^{3}J_{H,H}$ = 7.13 Hz, 1H; C⁷-H), 2.91 (d, ${}^{3}J_{P,H}$ = 14.04 Hz, 3H; N-CH₃). ${}^{13}C{}^{1}H$ NMR (125.74 MHz, 298 K, C_6D_6): δ / ppm = 198.0 (d_{sat}, ²J_{P,C} = 38.0 Hz, ¹J_{W,C} = 174.5 Hz; trans-CO), 194.8 (d_{sat}, ²J_{P,C} = 8.4 Hz, ¹J_{W,C} = 125.9 Hz; *cis-CO*), 145.4 (d, ${}^{3}J_{P,C}$ = 4.1 Hz; Ar-*C*⁸), 136.9 (d, ${}^{1}J_{P,C}$ = 46.5 Hz; Ar-*C*¹), 131.8 (d, ${}^{3}J_{P,C}$ = 3.2 Hz; Ar-C^{4a}), 131.0 (s; Ar-C³H), 128.9 (d, ⁴J_{P,C} = 3.0 Hz; Ar-C⁴H), 128.3 (s; Ar-C⁵H), 127.1 (d, ²J_{P,C} = 6.8 Hz; Ar- C^{8a}), 126.5 (d, ${}^{2}J_{P,C}$ = 21.8 Hz; Ar- C^{2} H), 119.1 (s; Ar- C^{6} H), 105.9 (d, ${}^{3}J_{P,C}$ = 7.7 Hz; Ar- C^{7} H), 28.8 (d, ${}^{2}J_{P,C}$ = 8.8 Hz; N-CH₃). ³¹P{¹H} NMR (202.44 MHz, 298 K, C₆D₆): δ / ppm = 111.6 (s_{sat}, ¹J_{W,P} = 332.4 Hz). ³¹P NMR $(202.44 \text{ MHz}, 298 \text{ K}, C_6 D_6): \delta / \text{ppm} = 111.6 \text{ (m}_{sat}, {}^{1}J_{W,P} = 332.4 \text{ Hz}). \text{ MS (EI, 70 eV): } m/z \text{ (\%)} = 544.9 \text{ (4)}$ [*M*]⁺, 527.0 (2) [*M*-Cl+OH]⁺, 510.0 (1) [*M*-Cl]⁺, 454.0 (3) [*M*-Cl-2CO]⁺, 405.0 (15) [*M*-5CO]⁺, 186.1 (100) [*M*−W(CO)₅−Cl]⁺, 171.1 (5) [*M*−W(CO)₅−Cl−CH₃]⁺. HRMS (EI, 70 eV): *m/z* calcd for [C₁₆H₉NO₅PClW]⁺: 544.9416; found: 544.9386.

Compound 6

Compound 5 (prepared in situ using 1.033 g (3.80 mmol, 1.0 eq.) of compound 1 and 1.373 g (3.76 mmol, 1.0 eq.) of $[W(CO)_5(CH_3CN)]^8$) was passed as crude material through a column with moist silica gel (h = 8 cm, d = 1 cm) using 180 mL of a 1:1 diethyl ether/petrol ether (40/65) mixture at ambient temperature to obtain a yellow solution. All volatiles were removed in vacuo at 40 °C to obtain a yellow powder. Yield: 0.25 g (0.47 mmol, 12%). Mp 120–121 °C (dec.). Elemental analysis calcd (%) for C16H9NO5PCIW: C 36.46, H 1.91, N 2.66; found: C 37.43, H 2.38, N 2.63. IR (ATR Diamond): vmax / cm⁻¹ = 1900 (s) (CO), 1982 (s) (CO), 2073 (s) (CO), 3473 (s) (OH). ¹H NMR (500.04 MHz, 298 K, C₆D₆): δ / ppm = 7.60 (dd, ³J_{P,H} = 7.18 Hz, ³J_{H,H} = 7.14 Hz, 1H; C²-*H*), 7.51 (d, ³J_{H,H} = 8.68 Hz, 1H; C³-*H*), 7.25–7.18 (m, 2H; Ar-*H*), 7.07 (d, ${}^{3}J_{H,H}$ = 8.31 Hz, 1H; Ar-*H*), 6.11 (d, ${}^{3}J_{H,H}$ = 7.27 Hz, 1H; C⁷-*H*), 2.90 (d, ${}^{3}J_{P,H}$ = 9.44 Hz, 3H; N-CH₃), 2.85 (br s, 1H; P-OH). ¹³C{¹H} NMR (125.74 MHz, 298 K, C₆D₆): δ / ppm = 199.1 (d_{sat}, ²J_{P,C} = 29.4 Hz, ${}^{1}J_{W,C}$ = 140.3 Hz; trans-CO), 195.9 (d_{sat}, ${}^{2}J_{P,C}$ = 9.0 Hz, ${}^{1}J_{W,C}$ = 125.0 Hz; cis-CO), 145.8 (d, ${}^{3}J_{P,C}$ = 2.1 Hz, Ar-*C*⁸), 136.2 (d, ¹*J*_{P,C} = 51.1 Hz; Ar-*C*¹), 131.7 (d, ³*J*_{P,C} = 4.4 Hz; Ar-*C*⁴), 130.1 (s; Ar-*C*³H), 129.2 (s; Ar-*C*⁴H), 128.4 (s; Ar-*C*⁵H), 127.0 (d, ²*J*_{P,C} = 7.2 Hz; Ar-*C*^{8a}), 126.4 (d, ²*J*_{P,C} = 18.7 Hz; Ar-*C*²H), 117.2 (s; Ar-*C*⁶H), 102.8 (s; Ar-*C*⁷H), 29.0 (d, ²*J*_{P,C} = 11.8 Hz; N-CH₃). ³¹P{¹H} NMR (202.44 MHz, 298 K C₆D₆): δ / ppm = 118.0 (s_{sat}, ¹J_{W,P} = 320.9 Hz). ³¹P NMR (202.44 MHz, 298 K, C₆D₆): / ppm = 118.0 (br s_{sat}, ¹J_{W,P} = 320.9 Hz). MS (EI, 70 eV): m/z (%) = 527.0 (18) [M]⁺, 471.0 (8) [M-2CO]⁺, 443.0 (12) [M-3CO]⁺, 415.0

(6) [*M*−4CO]⁺, 387.0 (28) [*M*−5CO]⁺, 203.1 (8) [*M*−W(CO)₅]⁺, 186.1 (100) [*M*−W(CO)₅−OH]⁺. HRMS (EI, 70 eV): *m/z* calcd for [C₁₆H₁₀NO₆P¹⁸²W]⁺: 524.9728; found: 524.9745.

3 NMR spectra

Compound 1

Figure S1 1 H NMR spectrum (400.13 MHz, C₆D₆, 298 K) of compound 1.

Figure S3 ³¹P{¹H} NMR spectrum (121.51 MHz, THF, 298 K) of the reaction mixture of 1 with 2a.

Figure S4 Zoom into the ${}^{31}P{}^{1}H$ NMR spectrum (121.51 MHz, THF, 298 K) of the reaction mixture of **1** with **2a** (Figure S3).

Reaction of 1 with 2b

Figure S5 $^{31}P{^1H}$ NMR spectrum (121.51 MHz, CH₂Cl₂, 298 K) of the reaction mixture of 1 with 2b.

Figure S6 ³¹P NMR spectrum (121.51 MHz, CH₂Cl₂, 298 K) of the reaction mixture of 1 with 2b.

Figure S9 ³¹P{¹H} NMR spectrum (202.44 MHz, C₆D₆, 298 K) of complex **5**.

Figure S11 ¹H, ¹³C HSQC NMR spectrum (500.04 MHz, 125.75 MHz, C₆D₆, 298 K) of complex 5.

Figure S12 ¹H, ¹³C HMBC NMR spectrum (500.04 MHz, 125.75 MHz, C₆D₆, 298 K) of complex 5.

Compound 6

Figure S13 ¹H NMR spectrum (500.04 MHz, C₆D₆, 298 K) of complex **6**.

Figure S18 ¹H, ¹³C HMBC NMR spectrum (500.04 MHz, 125.75 MHz, C₆D₆, 298 K) of complex **6**.

S15

4 X-ray diffraction studies

Compound 1

Figure S20 Molecular structure of **1** in the single crystal lattice at 123(2) K. Thermal ellipsoids are set at 50% probability. Hydrogen atoms were omitted for clarity. Suitable single crystals were obtained as clear colorless blocks by vapor diffusion of *n*-pentane into a concentrated solution of 19 mg of **1** in 0.8 mL of diethyl ether at ambient temperature in a glovebox. CCDC 2250016.

Table S1 Crystal data and structure refinements for 1.

Identification code	GSTR720, TB-017 // GXray6598
Crystal habitus	clear colorless block
Device type	STOE IPDS-2T
Empirical formula	$C_{12}H_{12}Cl_2NP$
Moiety formula	$C_{12}H_{12}Cl_2NP$
Formula weight / g/mol	272.10
Т/К	123(2)
Crystal system	orthorhombic
Space group	P212121
<i>a</i> / Å	9.5389(6)
<i>b</i> / Å	9.7198(5)
<i>c</i> / Å	13.2575(6)
α/°	90
β/°	90
γ/°	90
V/Å ³	1229.19(11)
Ζ	4
$ ho_{calc}$ / g/cm 3	1.470
μ / mm ⁻¹	0.628
F(000)	560.0
Crystal size / mm ³	0.31 × 0.29 × 0.25

Absorption correction	Integration
Min. and max. transmission	0.9052 and 0.9803
Radiation	Mo-K _α (λ = 0.71073 Å)
2 $arTheta$ range for data collection / $^\circ$	5.984 to 55.994
Completeness to $artheta$	0.986
Index ranges	$-8 \le h \le 12, -11 \le k \le 12, -15 \le l \le 17$
Reflections collected	4445
Independent reflections	2932 (R_{int} = 0.0141, R_{σ} = 0.0252)
Data / restraints / parameters	2932 / 0 / 147
Goodness-of-fit on F ²	0.958
Final R indexes $(I \ge 2\sigma(I))$	$R_1 = 0.0209, \ \omega R_2 = 0.0463$
Final <i>R</i> indexes (all data)	$R_1 = 0.0255, \ \omega R_2 = 0.0470$
Largest diff. peak and hole / e/ų	0.22 and -0.18
Flack parameter	-0.04(2)

Compound 5

Figure S21 Molecular structure of **5** in the single crystal lattice at 180(2) K. Thermal ellipsoids are set at 50% probability. Hydrogen atoms are omitted for clarity. Suitable single crystals were obtained as clear light yellow blocks by slow evaporation of solvent from 2.5 mL of a saturated solution of **5** in *n*-pentane at ambient temperature in a glovebox. CCDC 2250017.

Table S2 Crystal data and structure refinements for 5.

Identification code	GSTR729, TB053P.K // GXray6649
Crystal habitus	clear light yellow block
Device type	STOE IPDS-2T
Empirical formula	C ₁₆ H ₉ CINO ₅ PW
Moiety formula	C ₁₆ H ₉ CINO ₅ PW
Formula weight / g/mol	545.51
Т/К	180
Crystal system	monoclinic
Space group	P21/n
a / Å	11.8259(10)
<i>b</i> / Å	12.6614(8)
c / Å	12.5663(10)
α/°	90
β/°	110.673(6)
γ/°	90
V/Å ³	1760.4(2)
Ζ	4
$ ho_{\it calc}$ / g/cm 3	2.058
μ / mm ⁻¹	6.830
F(000)	1032.0
Crystal size / mm ³	$0.15 \times 0.08 \times 0.06$
Absorption correction	integration
Min. and max. transmission	0.1867 and 0.4901
Radiation	Mo-K _α (λ = 0.71073 Å)
2 $arTheta$ range for data collection / °	5.88 to 55.984
Completeness to $artheta$	0.982
Index ranges	$-15 \le h \le 14, -14 \le k \le 16, -12 \le l \le 16$
Reflections collected	8798
Independent reflections	4202 (R_{int} = 0.0783, R_{σ} = 0.2145)
Data / restraints / parameters	4902 / 0 / 227
Goodness-of-fit on F ²	0.530
Final R indexes $(I \ge 2\sigma(I))$	$R_1 = 0.0315, \ \omega R_2 = 0.0433$
Final <i>R</i> indexes (all data)	$R_1 = 0.0994, \ \omega R_2 = 0.0517$
Largest diff. peak and hole / e/Å ³	0.80 and -1.10

Compound 6

Figure S22 Molecular structure of **6** in the single crystal lattice at 180(2) K. Thermal ellipsoids are set at 50% probability. Hydrogen atoms are omitted for clarity. Suitable single crystals were obtained as clear light yellow plates by vapor diffusion of *n*-pentane into a concentrated solution of 9 mg of **6** in 0.25 mL of diethyl ether at ambient temperature in a glovebox. Due to the rather low quality data set, the structure of **6** was added to the ESI but not discussed in the main body of the manuscript. CCDC 2250018.

Table S3 Crystal	data and	structure	refinements	for 6	5 .
------------------	----------	-----------	-------------	-------	------------

Identification code	GSTR743, TB037P.K // GXray6650
Crystal habitus	clear light yellow plate
Device type	STOE IPDS-2T
Empirical formula	$C_{16}H_{10}NO_6PW$
Moiety formula	$C_{16}H_{10}NO_6PW$
Formula weight / g/mol	527.07
Т/К	123
Crystal system	monoclinic
Space group	12/m
a / Å	9.1981(5)
<i>b /</i> Å	14.8394(12)
c / Å	13.0755(8)
α/°	90
β/°	102.642(6)
γ/°	90
V / Å ³	1741.5(2)
Ζ	4
$ ho_{calc}$ / g/cm ³	2.010
μ / mm ⁻¹	6.756
F(000)	1000.0

Crystal size / mm ³	$0.18 \times 0.15 \times 0.05$
Absorption correction	integration
Min. and max. transmission	0.1279 and 0.3453
Radiation	Mo-K _α (λ = 0.71073 Å)
2 $arTheta$ range for data collection / °	4.21 to 50.488
Completeness to $artheta$	0.962
Index ranges	$-10 \le h \le 10, -17 \le k \le 17, -15 \le l \le 15$
Reflections collected	4632
Independent reflections	1587 (R_{int} = 0.1460, R_{σ} = 0.1049)
Data / restraints / parameters	1587 / 183 / 165
Goodness-of-fit on F ²	1.135
Final R indexes $(I \ge 2\sigma(I))$	$R_1 = 0.0768, \ \omega R_2 = 0.2047$
Final <i>R</i> indexes (all data)	$R_1 = 0.0915, \ \omega R_2 = 0.2164$
Largest diff. peak and hole / e/Å ³	2.27 and -3.49

Table S4 Bond lengths for 6.

Atom	Atom	Bond length / Å	Atom	Atom	Bond length / Å
W	Р	2.458(5)	N7	C11	1.48(4)
W	C12	1.95(2)	C1	C6	1.37(4)
W	C13	2.028(17)	C1	C2	1.34(3)
W	C13 ¹	2.028(17)	C4	C5	1.43(5)
W	C14 ¹	2.062(18)	C4	C3	1.37(3)
W	C14	2.062(18)	C5	C6	1.44(4)
Р	01	1.609(14)	C7	C2	1.3900
Р	N7	1.78(2)	C7	C8	1.3900
Р	C1	1.84(3)	C2	C3	1.3900
02	C12	1.18(3)	C3	C10	1.3900
O3	C13	1.14(2)	C10	C9	1.3900
04	C14	1.09(2)	C9	C8	1.3900
N7	C7	1.38(2)			

¹+X,1-Y,+Z

Atom	Atom	Atom	Angle / °	Atom	Atom	Atom	Angle / °
C12	W	Р	177.1(6)	C11	N7	Р	123.7(18)
C12	W	C13	87.4(6)	C6	C1	Р	124(3)
C12	W	C13 ¹	87.4(6)	C2	C1	Р	108.8(18)
C12	W	C14 ¹	92.6(6)	C2	C1	C6	127(3)
C12	W	C14	92.6(6)	C3	C4	C5	119(3)
C13 ¹	W	Р	90.6(5)	C4	C5	C6	124(3)
C13	W	Р	90.6(5)	C1	C6	C5	111(3)
C13	W	C13 ¹	90.3(10)	N7	C7	C2	111.6(15)
C13	W	C14 ¹	92.3(9)	N7	C7	C8	128.4(15)
C13 ¹	W	C14	92.3(9)	C2	C7	C8	120.0
C13 ¹	W	C14 ¹	177.5(7)	C1	C2	C7	117.7(16)
C13	W	C14	177.5(7)	C1	C2	C3	122.3(16)
C14	W	Р	89.5(4)	C3	C2	C7	120.0
C14 ¹	W	Р	89.5(4)	C4	C3	C2	117(2)
C14 ¹	W	C14	85.2(12)	C4	C3	C10	123(2)
01	Р	W	112.2(5)	C2	C3	C10	120.0
01	Р	N7	102.6(8)	C3	C10	C9	120.0
01	Р	C1	104.5(10)	C8	С9	C10	120.0
N7	Р	W	114.2(8)	С9	C8	C7	120.0
N7	Р	C1	88.3(15)	02	C12	W	176.9(19)
C1	Р	W	130.0(9)	03	C13	W	175.4(16)
C7	N7	Р	112.4(17)	04	C14	W	178(2)
C7	N7	C11	122(2)				

Table S5 Bond angles for 6.

¹+X,1-Y,+Z

5 Theoretical investigations

Computational details

All the geometric and energy calculations have been performed using ORCA 5.0 program⁹ by means of the PBE0¹⁰-D4¹¹ method in combination with the def2-TZVP¹² basis set. The solvent effects have been modeled using the CPCM continuum model¹³ and taken into consideration for both optimization and energy calculations. The minimum or transition state nature of the compounds have been determined by frequency calculations. All minima have zero imaginary frequencies and the transition state have only one imaginary frequency that connects the starting and final products. The transition states have been computed using the NEB-TS (Nudged Elastic Band with TS optimization)¹⁴ methodology as implemented in ORCA 5.0 program. The NBO analysis¹⁵ was performed using the NBO7.0 program¹⁶ at the same level of theory.

Computed structures

Cartesian coordinates (in Å) for all computed species. Geometries are computed at the $CPCM(CH_2Cl_2)/PBE0-D4/def2-TZVP$ level of theory.

3

W	7.07991466235873	5.84702326169664	5.26540807331311
Cl	6.96942711385361	8.13064581012577	1.95435271660310
Ρ	6.02131542772173	7.56591274645321	3.69300420971700
0	8.58348848913192	4.07696150680148	7.38107477315744
0	9.78471125735484	7.50153927477836	4.89650734457027
0	6.24165023665105	7.67382021134318	7.74203077270962
0	4.49466922592716	4.11984269628327	5.96936696189867
0	8.16613842153481	3.68491452842373	3.19098663271277
Ν	5.02739970460208	5.89647029057217	1.93957925444343
С	4.28215693387434	8.08138012146799	3.48404240077275
С	3.56175086708208	7.75091185787813	2.30930206380989
С	2.35205999353413	8.43171343826226	2.01828012329339
С	1.79645572342308	9.28098376603509	2.99788544411540
Н	0.85855390731282	9.78230926517846	2.78456415191592
С	2.42589010382362	9.45750151432881	4.19889609622386
Н	1.98569129911275	10.08520330191173	4.96441192765677
С	3.69285482289299	8.89458403977429	4.42464631367463

Н	4.21595226763836	9.15168374934172	5.33521534846404
С	4.01688672742581	6.75530518640574	1.42050150908675
С	3.41102745466508	6.58543357021574	0.20301460369065
Н	3.76613194011097	5.82950978235823	-0.48622986836907
С	2.28241289707212	7.35400424013099	-0.13754593697830
Н	1.81650991951754	7.20837204469346	-1.10515090779939
С	1.73660796451049	8.22472650487414	0.76477379938035
Н	0.82632712323602	8.76687303263954	0.53373775238166
С	5.91287485291334	5.33480640563941	0.92603589806027
Н	6.26636171510558	6.11887483768336	0.26103304700855
Н	5.40324650186917	4.56576763027299	0.33371910850102
Н	6.76882944147048	4.87279070805026	1.41356397840182
С	8.02693729110703	4.71781527881409	6.60864211643501
С	8.80912797732245	6.92200251441040	5.00535186772634
С	6.52467491383600	7.05642325823077	6.82569187999411
С	5.39482867947078	4.75295384021900	5.66316132881528
С	7.73986484347699	4.49395159529111	3.87661335402915
С	4.38376363949131	4.81473404424542	2.68953379744952
Н	5.14842744968074	4.17124878226622	3.12052415568302
Н	3.76793373370817	5.22919857811736	3.48649530396254
Н	3.74997532880539	4.21211300474226	2.02790788522483
Cl	6.65082500737399	9.35233452004272	4.68384941826350

4

W	7.22970915112822	6.34923342952890	5.04776930763001
Cl	6.92238773746470	8.60885713102440	2.07766272952613
Ρ	5.91499375941899	7.25764158450270	3.24517534652937
0	8.92913961273610	5.62978661671349	7.63387603645660
0	7.93178762089463	9.37899235161953	5.76934052181307
0	4.54911090923359	6.19904839696365	6.78291734547722
0	7.03652594432847	3.20168676000497	4.54897968726269
0	9.80473948965542	6.33579572361170	3.16505487161738
Ν	5.18983965875629	6.21562532336484	1.81461370662098
С	4.34701253193105	8.09117061482202	3.40837113659084
С	3.58058361064472	7.91030598559198	2.24385285651509

С	2.39221010578073	8.62485424432739	2.02064943786325
С	1.97020490803874	9.49623310809835	3.05030472452278
Н	1.05477039807153	10.06264467598312	2.91910571082493
С	2.70215311140404	9.62565851986291	4.20505508415815
Н	2.35915076199578	10.28881828010306	4.99042795218730
С	3.91672255030638	8.93603600915103	4.39816755114003
Н	4.47366720500463	9.10600624767089	5.31811377742675
С	4.04993144481200	6.98878687029927	1.30760260813645
С	3.41123085740973	6.78539442751603	0.12194830497234
Н	3.76328282985742	6.06772346877981	-0.60826586351052
С	2.23941347988725	7.53198592446783	-0.12904396768782
н	1.72631134358715	7.38395829550544	-1.07136997701179
С	1.72927918425245	8.41076497845713	0.79294681208021
н	0.81291400007692	8.95101263193435	0.58355272995419
С	4.66083457933993	4.95687165988275	2.42848496245985
н	4.08217058950707	4.43834040851932	1.66647413046519
н	4.02496905767297	5.20312526227603	3.27781752048535
Н	5.50089485105818	4.34409718766605	2.73997306822752
С	8.32094491447399	5.87549026621581	6.70339596256106
С	7.63343230689455	8.31191272642029	5.51656195130974
С	5.50808151812397	6.27976455046250	6.17707685808791
С	7.06870464465137	4.33052286383411	4.70022304473990
С	8.89302281986841	6.34471234108934	3.84795896862468
С	6.19455007217639	5.85931163418368	0.78188401584775
н	6.47024603050140	6.74474702086663	0.21829708294500
н	7.06311005667989	5.43276294651918	1.28273439352347
н	5.75518765646984	5.11219183675718	0.12280268325885
Cl	4.70102502590430	9.92401661540130	7.68179534636763

5

W	7.39343842922752	6.30972876517602	5.13962849461994
Cl	7.67066825039689	7.74290928279886	1.62024513714045
Ρ	6.31555463963075	6.89421050294652	3.00181289099585
0	8.65390224088256	5.67157545563770	7.97175207146237
0	8.56245795775288	9.27381221605304	5.32544980249949

0	4.69033549448592	7.23658878244831	6.55523851856352
0	6.23929093296675	3.33819714983158	5.01479085693439
0	10.08220575625193	5.40235766270072	3.67021889319377
Ν	5.47832514776595	5.75424596812059	2.09056238117059
С	4.95735969666654	8.06165417372944	2.90471079624949
С	3.98590559393018	7.52224142400358	2.05333708457757
С	2.81505094562041	8.20965926513104	1.71287412026994
С	2.64909148432730	9.48554135152488	2.29215318130810
Н	1.76005462129602	10.06189233906008	2.06037738744571
С	3.59893374439454	10.00573756884647	3.14397793326252
Н	3.44426130998714	10.98682399561413	3.57773769729187
С	4.77488184016299	9.30111564996997	3.46324311966301
Н	5.51219283091870	9.74295500118437	4.12369565082939
С	4.28791553219846	6.23770898261112	1.55884833497767
С	3.42331774622918	5.63066154499832	0.68785100726811
Н	3.62196133946423	4.64828853455729	0.27801357332418
С	2.23775148939919	6.32095005086953	0.33363794690789
Н	1.55390361183023	5.83427923176710	-0.35256881565835
С	1.92456222587637	7.56382829691573	0.82042947124367
Н	1.00544014243251	8.05690435385920	0.52622646671565
С	6.03956103088405	4.49244551357872	1.66559319243145
Н	6.26445487499169	4.50619454752005	0.59551240239977
Н	5.34216830221334	3.67841536243025	1.87468787921906
Н	6.96485797602980	4.30405036038425	2.20865235344697
С	8.20122623367820	5.89905157829233	6.94533390094204
С	8.13655255513632	8.21766818677602	5.25294501496327
С	5.66050867536725	6.90819461856524	6.05186328623193
С	6.65665278599397	4.39969833280643	5.04731903947984
С	9.11870561727105	5.71928829217352	4.19130807792789
С	5.33491189601648	9.50873301454719	-0.49787932855605
Н	5.34226798995414	9.84484594681702	0.53494334704494
Н	6.26487469460233	9.77330011209382	-0.99401796499341
Н	5.16090565977680	8.43793921637285	-0.55145850657499
Cl	3.99716750398829	10.33351592728505	-1.33976805622012

TS1

Imaginary frequency: -88.10 cm⁻¹

W	2.17031514864269	-0.94857333254768	2.03066789415001
Cl	2.00384938495852	1.42736503349493	-1.13702403766733
Ρ	0.95990842996180	0.39400575034640	0.28700231114509
0	3.76899231464546	-2.42227757878625	4.31027567535195
0	4.78651387715441	0.82141262824927	1.46986717623332
0	0.97829584925853	0.82446867501747	4.41784502132708
0	-0.18321330957442	-2.94539412439683	2.78048267723542
0	3.41216602576378	-3.18641943691954	0.14903420143708
Ν	0.15119104685186	-0.76847603778958	-1.11340809112413
С	-0.63046778510778	1.24437627574150	0.34177740568191
С	-1.36684495098551	1.02381810122156	-0.83628438821727
С	-2.53425827318191	1.75129233569782	-1.13284932814370
С	-3.00476071698664	2.64237924586064	-0.14513495157284
Н	-3.90499033725514	3.21640313465363	-0.33536789615747
С	-2.33508620302973	2.77642280384184	1.04548547257558
Н	-2.71610479109014	3.45051339806468	1.80339643401515
С	-1.12515391079171	2.09959645073141	1.29271492722939
Н	-0.56562252150127	2.29970109098402	2.19507533195600
С	-0.90053843590858	0.04459601000924	-1.71383347697129
С	-1.49139280235420	-0.17301827691717	-2.92226362773534
Н	-1.13799923792380	-0.93509190535079	-3.60526705614910
С	-2.61758358675411	0.60878247565556	-3.26003087264195
Н	-3.08754286139551	0.45078161632290	-4.22310031133807
С	-3.14373455085549	1.52484869069157	-2.38633405690483
Н	-4.03423059044556	2.08442709892729	-2.65004765059525
С	-0.51094765082527	-1.91556054725292	-0.42944336013522
Н	-1.10762430946693	-2.44712266526388	-1.16931060544044
Н	-1.15491036014898	-1.54374432000183	0.36531556141149
Н	0.25439495333331	-2.57416707880986	-0.02917335949578
С	3.18995777331032	-1.88442440813333	3.48152231344779
С	3.83048666751955	0.24030215166561	1.66924874554546
С	1.40897443622691	0.27492455823396	3.52006523913811

С	0.63150970780723	-2.20279753497999	2.47394514785087
С	2.94775627975778	-2.34330224172846	0.76999010194964
С	1.11653715896835	-1.30785433699890	-2.09805511079766
Н	1.42800603980479	-0.52406048644031	-2.77944225594194
Н	1.97620242207929	-1.70675463805559	-1.56588092798266
Н	0.63181226749365	-2.11338215783126	-2.64895738842919
Cl	1.90613740204441	2.74200358279289	1.77749711576015

TS2

Imaginary frequency: -579.50 cm⁻¹

W	1.71117964114216	-0.99118380983155	2.28761287285577
Cl	2.73203825174236	1.29595570462789	-0.52842694505741
Ρ	1.16255270869358	0.22586784556310	0.22270539041593
0	2.31335166408186	-2.15061871218780	5.17097228931578
0	2.42760088287007	1.85976309381259	3.52290725131889
0	-1.37363949598353	-0.66795453285568	3.03735905413373
0	1.23053235841087	-4.02864476383343	1.42281918922950
0	4.75333100928350	-1.34410473313729	1.37518031659408
Ν	0.46181400247056	-0.56229701427815	-1.23358525303980
С	-0.20217973429720	1.37839788902286	0.31420630003751
С	-1.25705276338686	0.84211667759745	-0.43848390887010
С	-2.55743811947402	1.36913026006210	-0.38266395305955
С	-2.74219867622206	2.51044625177080	0.42605655978619
Н	-3.72768543133965	2.95796485969480	0.49212699803976
С	-1.69240211074091	3.05263984085221	1.13104149998943
Н	-1.85810198079438	3.93079913441659	1.74382287816606
С	-0.40690675860514	2.47969925866588	1.10374029311979
Н	0.38829741459305	2.90527224921313	1.70359490222406
С	-0.94353172792133	-0.27922705284392	-1.22019613654558
С	-1.91806632751433	-0.92709506357831	-1.92096675492722
Н	-1.70590066906084	-1.79812430908462	-2.52808119153911
С	-3.23622491079415	-0.41741957277309	-1.85390956439590
Н	-4.01073905882963	-0.93028881234233	-2.41168655267242
С	-3.55613823008692	0.69885778267438	-1.12565020748993
н	-4.57462163693562	1.06927182260166	-1.10595099035565

С	0.82877227308937	-1.97419286075273	-1.40160328174107
Н	0.58291975399509	-2.28896505874010	-2.41517141453313
Н	0.28755300118132	-2.59781646718264	-0.69211171216330
Н	1.90274895488446	-2.08201264679533	-1.25475377668287
С	2.10060995363267	-1.74481038164321	4.12433977377766
С	2.15438177765736	0.85310978396349	3.06092779093136
С	-0.26929856090165	-0.78503504194283	2.77829913810763
С	1.37943745187229	-2.92908730424967	1.68496593041712
С	3.67043695227928	-1.21414236947306	1.70413576213799
С	1.04375127424536	0.25472738342449	-2.89724501411777
Н	0.81946282483879	1.26773451911042	-2.61248559515912
Н	2.05512490899289	-0.10577848188305	-2.83218914037611
Н	0.31544944385298	-0.30229457910130	-3.46209098415903
Cl	1.71077968907833	1.16933921143622	-4.98956181371319

6 References

- 1 W. L. E. Armarego, *Purification of Laboratory Chemicals*, Elsevier, Amsterdam, 5th edn., 2003.
- 2 G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, 29, 2176–2179.
- 3 R. H. Blessing, *Acta Crystallogr., Sect. A: Found. Crystallogr.*, 1995, 51, 33–38.
- 4 G. M. Sheldrick, ShelXS97 and ShelXL97, University of Göttingen, Germany, 1997.
- 5 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, 42, 339–341.

F. H. Carré, C. Chuit, R. J. P. Corriu, W. E. Douglas, D. M. H. Guy and C. Reyé, *Eur. J. Inorg. Chem.*,
2000, 2000, 647–653.

- 7 M. A. Zayed and H. Fischer, J. Therm. Anal. Calorim., 2000, 61, 897–908.
- 8 U. Koelle, J. Organomet. Chem., 1977, 133, 53–58.
- 9 F. Neese, WIREs Comput. Mol. Sci., 2022, 12.
- 10 C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158–6170.

11 E. Caldeweyher, J.-M. Mewes, S. Ehlert and S. Grimme, *Phys. Chem. Chem. Phys.*, 2020, 22, 8499–8512.

12 F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297–3305.

- 13 V. Barone and M. Cossi, J. Phys. Chem. A, 1998, 102, 1995–2001.
- 14 V. Ásgeirsson, B. O. Birgisson, R. Bjornsson, U. Becker, F. Neese, C. Riplinger and H. Jónsson, J. Chem. Theory Comput., 2021, 17, 4929–4945.
- 15 E. D. Glendening, C. R. Landis and F. Weinhold, J. Comput. Chem., 2019, 40, 2234–2241.

E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P.
 Karafiloglou, C. R. Landis and F. Weinhold, NBO 7.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2018.