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I. Experimental procedures

Materials. Glycidol (96.0%), Cu(OTf)2 (98.0%), 1,5,7-Triazabicyclo[4.4.0]dec-5-ene (98%), copper iodide 
(99.999%) were obtained from Sigma Aldrich. 1,3-Bis(2,6-diisopropylphenyl)imidazole-2-ylidene (98.0%) was 
obtained from Tokyo Chemical Industry. Toluene (99.9%) was sourced from Samchun Chemicals. Glycidol and 
toluene were dried with CaH2 and distilled prior to use. Catalysts A and B were prepared as described in the 
previous literature.[1] 

Measurements. Proton nuclear magnetic resonance (1H NMR) spectra were recorded with a Jeol Resonance 
ECZ600R (600 MHz) spectrometer. Chemical shifts are reported in delta (δ) units, parts per million (ppm) relative 
to the center of a peak at 2.50 ppm for DMSO-d6. Coupling constants are reported in Hertz (Hz). Carbon-13 
nuclear magnetic resonance (13C NMR) spectra were recorded with a Jeol Resonance ECZ600R (150 MHz) 
spectrometer. Chemical shifts are reported in delta (δ) units, parts per million (ppm) relative to the center of a 
peak at 39.52 ppm for DMSO-d6. 1H diffusion-ordered spectroscopy (DOSY) was recorded on a Bruker AVANCE 
Ⅲ HD 300 spectrometer at 25 °C. All samples were dissolved in DMSO-d6. Matrix-assisted laser 
desorption/ionization time-of-flight(MALDI-ToF) measurement was performed using autoflex maX from Bruker. 
2,5-Dihydroxybenzoic acid(DHB) was used as the matrix. For DMF-SEC, three polystyrene-gel columns [KD-
802 (from Shodex); pore size, 150 Å; 8 mm i.d. × 300 mm, KD-803 (from Shodex); pore size, 500 Å; 8 mm i.d. 
× 300 mm, KD-804 (from Shodex); pore size, 1500 Å; 8 mm i.d. × 300 mm] were connected to a PU-4180 pump, 
an RI-4030 refractive-index detector, and a UV-4075 ultraviolet detector (JASCO); the flow rate was maintained 
at 1.0 mL min−1 . The columns were calibrated against 13 standard poly(ethylene glycol) (PEO) samples (Agilent 
Technologies; Mp = 980–811 500; Mw/Mn = 1.03–1.11) to analyze the obtained polymer samples. Differential 
scanning calorimetry (DSC) was conducted on polymer samples under a dry nitrogen flow (40 ml/min) in the 
temperature range of -70~+70 oC at a heating or cooling rate of 10 °C/min on a Q2000 calorimeter (TA 
Instruments).

General procedure for polymerization of glycidol

Glycidol (148.2 mg, 2 mmol), catalysts (21.2 mg, 2 mol%), and toluene (1.0 ml) were added to the reaction vial. 
The mixture was stirred at the indicated temperature for 16 h under the nitrogen atmosphere. Then, the reaction 
mixture was washed with diethyl ether to remove the unreacted monomer. The product was dried at 50 oC for 1 
day before obtaining the yield and sample analysis.

Procedure for catalyst recycling experiment

Glycidol (148.2 mg, 2 mmol), catalyst (21.2 mg, 2 mol%), and toluene (1.0 ml) were added to the reaction vial. 
The mixture was stirred at the indicated temperature for 16 h under the nitrogen atmosphere. After the reaction, 
glycidol (148.2 mg, 2 mmol) was added repeatedly in each cycle. Then, the reaction mixture was washed with 
diethyl ether to remove the unreacted monomer. The product was dried at 50 oC for 1 day before obtaining the 
yield and sample analysis.

1 Seo. C.; Cheong. Y.-J.; Yoon. W.; Kim. J.; Shin. J.; Yun. H.; Kim. S.-J.; Jang. H.-Y.; Mononuclear Copper 
Complexes with Tridentate Tris(N-heterocyclic carbene): Synthesis and Catalysis of Alkyne-Azide 
Cycloaddition. Organometallics 2021, 40, 16-22
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II. Additional Polymerization Data 

Table S1. Previously reported DB values without using unprotected glycidol

catalyst

Sn(OTf)2
Sn(OTf)2
Sn(OTf)2

PBS
DMC-DEM

temp (°C)

20
0

-20
80

110

2.5h
42h
96h
72h
5h

8
8
8

27
25

refDBinitiator

isoamyl alcohol
isoamyl alcohol
isoamyl alcohol

--
--

0.21
0.20
0.15
0.25
0.27

time

PBS: phosphate buffered saline with pH = 6.0
DMC: double metal cyanide, DEM: diethyl malonate

Table S2. Solvent screening of glycidol polymerization

entry

O
OH solvent (2.0 M)

r.t., 16 h

1
2
3

solvent

toluene
dioxane
CH3CN

yield
(%)

94
--

3.5

catalyst A
(2.0 mol%)

0.18
--
--

DB

T1

O
O

O

OHHO

DL1,3 L1,4

O

O

T1

OH
O

HO

OH
HO
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Table S3. Detailed unit distribution of polymers of Table 1

Region

T2

L1,3

D

2L1,4

2D, 2T1

L1,3, L1,4

T1

2T2

L1,3

b Degree of branching =
2D

2D + L

82.5-83.0

79.7-80.4

77.7-78.3

72.6-73.1

70.4-72.0

68.5-69.7

62.9-63.3

61.2-61.8

60.7-61.2

Chemical shift
(ppm)

0.032

1.00

0.29

3.21

2.98

2.00

0.71

0.055

0.97

Entry 1

0

1.00

0.085

1.92

1.70

1.66

0.22

0

1.00

Entry 2

0

1.00

0.14

2.26

2.21

1.74

0.42

0.00

0.92

Entry 3

0.25

1.00

1.05

18.88

15.27

8.27

8.85

1.11

1.5

Entry 4

0.16

1.00

1.57

12.6

12.83

7.01

4.61

0.89

0.92

Entry 5

0

1.00

1.62

7.22

9.35

4.05

2.87

0.17

1.09

Entry 8

0

1.00

1.11

6.69

8.61

3.30

3.46

0.14

0.90

Entry 9

T1 (%)

T2 (%)

L1,3 (%)

L1,4 (%)

Terminal (%)

Dendritic (%)

Linear (%)

Degree of branchingb

20.4

19.5

0.9

8.0

71.6

27.5

44.1

0.18

9.7

9.7

0

3.8

86.5

44.1

42.4

0.08

15.6

15.6

0

5.2

79.2

37.2

42.0

0.12

44.2

43.0

1.2

5.1

50.7

4.9

45.8

0.17

35.0

33.8

1.2

11.5

53.5

7.3

46.2

0.30

32.2

31.2

0.9

17.6

50.2

10.9

39.3

0.41

39.3

38.5

0.8

12.4

48.4

11.1

37.2

0.34

a Obtained from inverse gated 13C NMR.
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Table S4. Unit distribution of polymers obtained from recycling experiments

Region

T2

L1,3

D

2L1,4

2D, 2T1

L1,3, L1,4

T1

2T2

L1,3

b Degree of branching =
2D

2D + L

82.5-83.0

79.7-80.4

77.7-78.3

72.6-73.1

70.4-72.0

68.5-69.7

62.9-63.3

61.2-61.8

60.7-61.2

Chemical shift
(ppm)

0.032

1.00

0.29

3.21

2.98

2.00

0.71

0.055

0.97

Cycle 1

0

1.00

0.19

2.04

1.96

1.77

0.25

0

1.02

Cycle 2

0.007

1.00

0.2

1.99

2.00

1.74

0.42

0.00

0.92

Cycle 3

T1 (%)

T2 (%)

L1,3 (%)

L1,4 (%)

Terminal (%)

Dendritic (%)

Linear (%)

Degree of branchingb

20.4

19.5

0.9

8.0

71.6

27.5

44.1

0.18

10.2

10.2

0

7.7

82.1

40.6

41.5

0.16

13.0

12.7

0.3

7.9

79.1

39.7

39.5

0.17

a Obtained from inverse gated 13C NMR.
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Table S5. Additional experimental results

entry

O
OH

1
2
3
4

temp.
(°C)catalyst

A (1 mol%)
A (4 mol%)
B (2 mol%)

CuI (2 mol%)/IPr (6 mol%)

25
25
0

25

yield
(%)

time
(h)

16
16
48
16

catalyst

DB

T1

O
O

O

OHHO

DL1,3 L1,4

O

O

T1

OH
O

HO

OH
HO

65
95
90
33

0.13
0.25
0.14
0.10

L1,3/L1,4

6.2
11.2
6.7
2.6

39/41
16/50
42/41
4.5/42

T1

15
23
10
51

D
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III. MALDI-ToF spectra 

Azide addition: Ring-opening of glycidol monomer by sodium azide was conducted prior to the polymer 
examination. After the reaction, it was confirmed by 1H NMR that all monomers were ring-opened. Accordingly, 
topology examination of polymers was attempted using sodium azide. The reaction was conducted with polymers, 
sodium azide (5 equivalents to OH), and 2.5 M of deionized water at 25 oC for 16 hours under a nitrogen 
atmosphere.

Figure S1. Ring-opening of glycidol by azide addition (a) glycidol, (b) ring-opened glycidol. 
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Figure S2. MALDI-ToF spectra of (a) polyglycerol (Table 1, Entry 1) (b) polyglycerol after N3
- 

addition. 
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Figure S3. MALDI-ToF spectra of (a) polyglycerol (Table 1, Entry 2) (b) polyglycerol after N3
- 

addition.
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Figure S4. MALDI-ToF spectra of (a) polyglycerol (Table 1, Entry 3) (b) polyglycerol after N3
- 

addition.
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Figure S5. MALDI-ToF spectra of (a) polyglycerol (Table 1, Entry 4) (b) polyglycerol after N3
- 

addition.
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Figure S6. MALDI-ToF spectra of (a) polyglycerol (Table 1, Entry 5) (b) polyglycerol after N3
- 

addition.
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Figure S7. MALDI-ToF spectra of (a) polyglycerol (Table 1, Entry 8) (b) polyglycerol after N3
- 

addition.
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Figure S8. MALDI-ToF spectra of polyglycerol (Table 1, Entry 9).
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IV. 1H DOSY NMR spectra

Measurement: All 1H DOSY spectra were acquired with the bipolar gradient pulse sequence using double 
stimulated echo and 3 spoil gradients for the convection compensation (dstebpgp3s). The time between pulses (∆) 
was kept at 0.12 s, and the gradient length (δ) was set to 4 ms with the 5 ms of eddy current. MestReNova 12.0 
was used for the processing of NMR data and the calculation of diffusion coefficient (D).
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Figure S9. 1H DOSY spectrum of entry 1(Table 1).
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Figure S10. 1H DOSY spectra of entry 2(Table 1).
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Figure S11. 1H DOSY spectra of entry 3(Table 1).



S18

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5
Chemical Shift (ppm)

1×10-12

1×10-11

1×10-10

1×10-9

1×10-8

1×10-7

1×10-6

Figure S12. 1H DOSY spectra of entry 4(Table 1).
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Figure S13. 1H DOSY spectra of entry 5(Table 1).
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Figure S14. 1H DOSY spectra of entry 8(Table 1).
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Figure S15. Stejskal-Tanner plot obtained from 1H DOSY NMR (Table 1).
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V. SEC data of polyglycerol

Mn:  2190,  Mw:  3000, Đ: 1.37

Figure S16. GPC traces of polyglycerol (Table 1, Entry 1).

Mn:  2670,  Mw:  4220, Đ: 1.59

Figure S17. GPC traces of polyglycerol (Table 1, Entry 2).
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Mn:  2160,  Mw:  2930, Đ: 1.36

Figure S18. GPC traces of polyglycerol (Table 1, Entry 3).

Mn:  640,  Mw:  740, Đ: 1.12

Figure S19. GPC traces of polyglycerol (Table 1, Entry 4).
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Mn:  680,  Mw:  780, Đ: 1.15

Figure S20. GPC traces of polyglycerol (Table 1, Entry 5).

Mn:  1500,  Mw:  2530, Đ: 1.69

Figure S21. GPC traces of polyglycerol (Table 1, Entry 8).
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Mn:  1100,  Mw:  1470, Đ: 1.33

Figure S22. GPC traces of polyglycerol (Table 1, Entry 9).

Cycle 2) Mn:  2570,  Mw:  4290, Đ: 1.67

Cycle 3) Mn:  2670,  Mw:  4690, Đ: 1.76

Figure S23. GPC traces of polyglycerol obtained from recycling experiments (Table 2).
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VI. Inverse-gated 13C NMR spectra of polyglycerol

Figure S24. Inverse-gated 13C NMR of entry 1 (Table 1)
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Figure S25. Inverse-gated 13C NMR of entry 2 (Table 1)

Figure S26. Inverse-gated 13C NMR of entry 3 (Table 1)
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Figure S27. Inverse-gated 13C NMR of entry 4 (Table 1)

Figure S28. Inverse-gated 13C NMR of entry 5 (Table 1)
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Figure S29. Inverse-gated 13C NMR of entry 8 (Table 1)

Figure S30. Inverse-gated 13C NMR of entry 9 (Table 1)
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Figure S31. Inverse-gated 13C NMR of polyglycerol obtained from 2nd cycle of recycling experiments 
(Table 2).
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Figure S32. Inverse-gated 13C NMR of polyglycerol obtained from 3rd cycle of recycling experiments 
(Table 2).
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VII. Thermal analysis of polyglycerol

Figure S33. DSC curves of polyglycerol (Table 1).
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Figure S34. TGA curve of polyglycerol (Table 1, entry 1).
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VIII. 1H NMR and ESI-MS of the reaction mixture including copper catalysts

Figure S35. 1H NMR spectra of (a) the ligand, (b) catalyst A, (c) the reaction mixture including catalyst 
A and glycidol in toluene, and (d) the reaction mixture including catalyst A and glycidol in dioxane
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Figure S36. ESI-MS spectra of the reaction mixture including catalyst A and glycidol


