Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

## **Supporting Information**

# Development of robust noble-metal free Lanthanum, Neodymium Doped Li<sub>1.05</sub>Ni<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> as a bifunctional electrocatalyst for electrochemical water splitting

Kayalvizhi Rajagopal<sup>1</sup>, Murugavel Kathiresan<sup>2</sup>, Arulmozhi Rajaram<sup>1</sup>, Abirami Natarajan<sup>1\*</sup>,

Kumaresan Natesan<sup>3</sup>

<sup>1</sup>Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603 203, India.

<sup>2</sup> Electro Organic & Materials Electrochemistry Division, CSIR – Central Electrochemical Research Institute, Karaikudi, Tamil Nadu – 630003, INDIA.

<sup>3</sup>Department of Physics, SSN Research Centre, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, Tamil Nadu, India

\*Corresponding author: Dr. N. Abirami

Mail Id: abiramin@srmist.edu.in

## 1. Synthesis method



Figure. S1 Schematic represents the preparation of  $Li_{1.05}Ni_{0.5}n_{1.5}O_4$ 

To synthesize  $Li_{1.05}Ni_{0.5}Mn_{1.5}O_4$ , stoichiometric quantities of (1.05) lithium hydroxide monohydrate, (0.5) nickel nitrate hexahydrate, and (1.5) manganese carbonate in the proportions 1.05:0.5:1.5 of Li, Ni, and Mn were dissolved in ethanol. The ethanol was evaporated at 40 °C while stirring. After vaporization, the mixture was thermally treated at 900 °C for 10 h at a rate of 0.8 °C min<sup>-1</sup> to achieve the final product presented in Figure S1.

### 1.2 Preparation of Li<sub>1.05</sub>Ni<sub>0.5</sub> La<sub>0.10</sub>Mn<sub>1.40</sub>O<sub>4</sub>

Figure. S2 Schematic represents the preparation of  $Li_{1.05}Ni_{0.5}La_{0.10}Mn_{1.40}O_4$ 

(1.05) Lithium hydroxide monohydrate, (0.5) nickel nitrate hexahydrate, (0.10) lanthanum oxide, and (1.40) manganese carbonate were dissolved in ethanol in the proportions 1.05:0.5:1.40 and 0.10 of Li, Ni, La, and Mn. To combine the reactants, the dispersion was mixed, and while stirring, the ethanol evaporated at 40°C. After volatilization, the mixture was calcined at 900 °C



for 10 hours at a rate of 0.8 °C min<sup>-1</sup> to yield  $Li_{1.05}Ni_{0.5}La_{0.10}Mn_{1.40}O_4$  is presented in Figure S2.

### 1.3 Preparation of Li<sub>1.05</sub>Ni<sub>0.5</sub> Nd<sub>0.10</sub>Mn<sub>1.40</sub>O<sub>4</sub>

Figure S3 Schematic represents the preparation of  $Li_{1.05}Ni_{0.5}Nd_{0.10}Mn_{1.40}O_4$ 





Stoichiometric quantities of (1.05) lithium hydroxide monohydrate, (0.5) nickel nitrate hexahydrate, (0.10) neodymium (III)oxide, and (1.40) manganese carbonate were dissolved in ethanol

in the ratios 1.05:0.5:1.40 and 0.10 of Li, Ni, Nd, and Mn. To mix the reactants, the dispersion was stirred, and the ethanol evaporated at 40 °C while stirring the mixture. Following evaporation, the



mixture was calcined at 900 10 hours at a rate of 0.8 °C to obtain  $Li_{1.05}Ni_{0.5}$  $Nd_{0.10}Mn_{1.40}O_4$  is presented Figure S3.

Figure S4 Raman spectra of (a)  $Li_{1.05}Ni_{0.5}Mn_{1.5}O_{4}$ , (b)  $Li_{1.05}Ni_{0.5}Nd_{0.10}Mn_{1.40}O_{4}$  and (c)  $Li_{1.05}Ni_{0.5}Nd_{0.10}Mn_{1.40}O_{4}$ 



Figure S5 FT- IR spectra of (a)  $Li_{1.05}Ni_{0.5}Mn_{1.5}O_{4,}$  (b)  $Li_{1.05}Ni_{0.5}Nd_{0.10}Mn_{1.40}O_{4}$  and (c)  $Li_{1.05}Ni_{0.5}Ni_{0.5}Nd_{0.10}Mn_{1.40}O_{4}$  and (c)  $Li_{1.05}Ni_{0.5}Ni_{0.5}Nd_{0.10}Mn_{1.40}O_{4}$ 

Figure S6 Elemental mapping images of (a-d)  $Li_{1.05}Ni_{0.5}Mn_{1.5}O_{4}$ , (e-i)  $Li_{1.05}Ni_{0.5}Nd_{0.10}Mn_{1.40}O_{4}$ and (j-n)  $Li_{1.05}Ni_{0.5}La_{0.10}Mn_{1.40}O_{4}$ 

Figure S7 EDAX images of (a)  $Li_{1.05}Ni_{0.5}Mn_{1.5}O_{4,}$  (b) $Li_{1.05}Ni_{0.5}Nd_{0.10}Mn_{1.40}O_{4}$  and (c)  $Li_{1.05}Ni_{0.5}Ni_{0.5}Nd_{0.10}Mn_{1.40}O_{4}$ 





Figure S8 HER analysis: (a-c) Cyclic voltameteric analysis of at different scan rates of LNM, LNM-La, and LNM-Nd; (d) Plot of different scan rate vs. current density for LNM, LNM-La and LNM-Nd





Potential / V vs RHE

Figure S9 OER analysis: (S9a-S9c) Cyclic voltameter analysis of LNM, LNM-La and LNM-Nd at different scan rates; (d) Plot of different scan rate vs. current density for LNM, LNM-La and

LNM-Nd

Figure S10 CV cycle stability test: Cyclic voltammograms measured at 1000 cycles at a scan rate of 50 mV/s were used to assess the stability of the  $Li_{1.05}Ni_{0.5}$   $La_{0.10}Mn_{1.40}O_4$  catalyst.



Figure S11 XPS spectra (a) XPS full survey spectra of  $Li_{1.05}Ni_{0.5}Mn_{1.5}O_4$ , (b) Li 1s, (c) Ni 2p, (d) Mn2p, (e) O1s, (f) C1s

Figure S12 XPS spectra (a) XPS full survey spectra of  $Li_{1.05}Ni_{0.5}Nd_{0.10}Mn_{1.40}O_4$ , (b) Li 1s, (c) Ni 2p, (d) Mn2p, (e) Nd 3d, (f) O1s, (g) C

Table S1 Comparison Table of the performance of LNM with recently reported catalysts.

