Binding Characteristics of Pyrrole-scaffold Hepatitis B Virus Capsid Inhibitors and Identification of Novel Potent Compounds

Tanachote Ruengsatra¹, Arthitaya Meeprasert¹, Eakkaphon Rattanangkool¹, Sirikan Deesiri¹, Jakkrit Srisa¹, Udomsak Udomnilobol¹, Wilasinee Dunkoksung¹, Natthaya Chuaypen^{1,2}, Rattanaporn Kiatbumrung^{1,2}, Pisit Tangkijvanich^{1,2}, Sornkanok Vimolmangkang³, Khanitha Pudhom⁴, and Thomayant Prueksaritanont¹*

¹Chulalongkorn University Drug Discovery and Drug Development Research Center (Chula4DR), Chulalongkorn University, 254 Phayathai Rd., Pathumwan, Bangkok 10330, Thailand.

²Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine; ³Department of Pharmacognosy and Pharmaceutical Botany; and ⁴Department of Chemistry, Faculty of Science, Chulalongkorn University, 1873 Rama 4 Rd, Pathumwan, Bangkok 10330, Thailand.

*Corresponding author. Email address: thomayant.p@pharm.chula.ac.th

Figure S1. (Left) RMSDs for the heavy atom compared to their starting structures of the HBV Cp dimer complexed with A-B) GLP-26, C-D) JNJ-6379, E-F) NVR 3-778, G-H) NVR 010-001-E2, and I-J) GLS-4 (black = global structure, red = chain B backbone, green = chain C backbone, and blue = ligand). (Right) RMSFs of alpha-carbons in the HBV Cp dimer (black = chain B, red = chain C) complexed with A-B) GLP-26, C-D) JNJ-6379, E-F) NVR 3-778, G-H) NVR 010-001-E2, and I-J) GLS-4. Two independent simulations are illustrated for each protein-ligand complex.

Figure S2. $\Delta G^{residue}_{bind}$ of the HBV Cp dimer complexed with A) GLP-26, B) JNJ-6379, C) NVR 3-778, D) NVR 010-001-E2, and E) GLS-4.

Figure S3. ESP surface of five representative ligand-HBV capsid protein (chain C) complexes (red surface = positive, blue surface = negative). The black rectangle highlights the electronegative atom of the ligands that contacted the positive ESP surface (residues $W125_C$, $R133_C$, and $P134_C$).

Figure S4. The predicted conformation of CU01-03 and CU05 in HBV capsid dimer interface

Figure S5. Effects of representative compound CU14 on HBV capsid assembly, determined by size exclusion chromatography (SEC, A) and transmission electron microscopy (TEM, B).

Residues	GLP-26		JNJ-6379		NVR 3-778		NVR 010-001-E2		GLS-4		Dinding region
	Nonpolar	Polar	Nonpolar	Polar	Nonpolar	Polar	Nonpolar	Polar	Nonpolar	Polar	Dinuling region
P25 _B	-1.288	0.117	-1.086	0.104	-1.025	0.169	-1.715	0.104	-2.064	0.092	L1
W102 _B	-1.320	-1.439	-1.783	-0.857	-1.499	-0.747	-2.323	-0.977	-2.269	-1.155	L1-L2
I105 _B	-0.674	0.053	-0.682	0.164	-0.736	-0.231	-1.040	-0.113	-1.141	-0.053	L1
F110 _B	-1.539	0.155	-1.724	0.385	-1.839	0.306	-1.347	0.221	-1.372	0.251	L2
S121 _C	-1.105	0.021	-0.908	0.425	-1.131	0.425	-0.605	0.344	-0.369	0.233	L3
V124 _C	-2.625	0.055	-2.232	0.246	-2.839	-0.177	-3.373	-0.023	-3.427	0.062	L1
W125 _C	-1.630	-0.285	-1.584	-0.024	-1.843	0.102	-1.389	-0.029	-1.321	-0.054	L3
T128 _C	-2.753	-1.107	-2.152	-1.726	-2.337	-2.581	-2.356	-0.037	-2.167	0.072	L1-L2
R133 _C	-0.743	0.315	-1.107	-0.533	-1.013	-0.565	-0.815	0.183	-1.022	0.112	L3
P134 _C	-1.536	0.218	-1.114	0.114	-0.984	0.059	-0.981	0.086	-0.942	0.055	L3
I139 _B	-1.293	-0.339	-1.206	-0.606	-0.571	0.025	-0.900	0.094	-0.758	0.120	L3
L140 _B	-3.075	-1.617	-2.719	-1.160	-2.704	1.254	-2.567	0.671	-2.594	0.738	L2-L3
S141 _B	-0.920	0.311	-0.768	0.671	-0.915	-0.115	-0.166	0.149	-0.161	0.164	L3
T142 _B	-0.472	0.033	-0.467	0.219	-0.199	-1.251	-0.028	0.059	-0.040	0.061	L3
W125 _c , R133 _C , and	-3.91	0.25	-3.81	-0.443	-3.84	-0.40	-3.19	0.24	-3.29	0.113	L3 small pocket
P134 _C											

Table S1. $\Delta G^{residue}_{bind}$ (kcal/mol) of the essential binding residues in HBV Cp dimer in complexation with five representative inhibitors.

Polar ($\Delta E_{ele} + \Delta G_{polar}$) and nonpolar ($\Delta E_{vdW} + \Delta G_{nonpolar}$) energy contributions were analyzed for selected residues.

METABOLITE IDENTIFICATION

Identification of metabolic soft spots using high resolution mass spectrometry

The metabolite identification was conducted using the AB Sciex X500B Q-TOF LC-MS/MS system. The samples were chromatographically separated using the Exion LC AD100 system with a Phenomenex Kinetex® C-18, 1.7 µm, 50×2.1 mm analytical column. The mobile phases consisted of water and acetonitrile, both fortified with 0.1% formic acid, and were used as phase A and B, respectively. The flow rate was set at 0.4 mL/min using a 2-step linear gradient from 2% to 65% B for 4 min, followed by ramping to 95% for 0.5 min. The Turbo VTM ion source was operated in the electrospray positive ionization mode under following conditions: curtain gas at 40 psi, heating gas 1 at 40 psi, nebulizing gas 2 at 40 psi, temperature at 450 °C, ion spray voltage floating at 4.5 kV, and declustering potential at 80 V. Mass calibration was performed every 5 sample injections using a standard calibration solution. The TOF MS scan and product ion (MS/MS) spectra were acquired for the m/z range 50-800.

Dynamic background subtraction and the mass defect filter (MDF) function were enabled. The MDF window was set at ± 40 mDa, and the mass range was set as ± 40 Da around the m/z value of the parent ion. An information-dependent data acquisition (IDA) method was used for triggering MS/MS acquisition for the top 6 intense ions using CE spread at 35 ± 15 V. The data were processed and interpreted using SCIEX OS version 1.6 and MetabolitePilotTM version 2.0 software (AB SCIEX, MA, USA).

Ion chromatograms of parent CU02 and its metabolites

Structures and fragmentation spectra of parent CU02 and its metabolites

Ion chromatograms of parent CU03 and its metabolites

Structures and fragmentation spectra of parent CU03 and its metabolites

NMR SPECTRUM OF SYNTHESIZED COMPOUNDS - 11.2082 7.5202 7.5072 7.4998 7.4868 2.2447 2.1853 2.0334 6.4709 6.4590 6.4590 5.8470 5.8416 5.8373 5.8373 5.8373 3.9315 3.7870 3.6503 3.23443.1368 0.93.T 0.45 4.13 0.48 0.48 0 0.93H **H**60.9 1.00-1 1.00-0.32/-3.16/ 0.66/ 0.80 8.5 8.0 7.5 7.0 6.6 6.0 5.5 5.0 4.5 4.0 3.5 f1(ppm) 2.0 11.5 11.0 10.5 10.0 9.5 2.5 2.0 3.0 1.5 1.0 0.5 0 9.0 ¹H NMR spectrum of CU01 (DMSO-*d*₆) 136.2572 136.1223 136.1223 135.1223 135.6646 135.8644 133.7649 134.1801 135.1801 135 160.3788 151.5934 151.5934 151.5109 151.5109 151.4717 151.6109 149.6093 149.6093 149.5317 $-\frac{108.0818}{104.0977}$ $\angle 103.8985$ - 172.3221 20.3378 49.7018 49.6008 46.6385 45.7749 - 113.2662 - 13.0115

¹³C NMR spectrum of CU01 (DMSO- d_6)

100 f1 (ppm) 90

70

80

50

60

40

30

20

10

110

120

190

180

170

160

150

140 130

00

¹³C NMR spectrum of CU02 (DMSO-*d*₆)

¹H NMR spectrum of CU03 (DMSO-*d*₆)

¹³C NMR spectrum of CU03 (DMSO- d_6)

¹³C NMR spectrum of CU04 (DMSO-*d*₆)

¹³C NMR spectrum of CU05 (DMSO- d_6)

¹³C NMR spectrum of CU06 (DMSO-*d*₆)

¹H NMR spectrum of CU07 (DMSO-*d*₆)

¹³C NMR spectrum of CU07 (DMSO- d_6)

¹³C NMR spectrum of CU08 (DMSO- d_6)

¹³C NMR spectrum of CU09 (DMSO-*d*₆)

¹³C NMR spectrum of CU10 (DMSO- d_6)

¹³C NMR spectrum of CU12 (Acetone- d_6)

¹³C NMR spectrum of CU13 (Acetone- d_6)

¹³C NMR spectrum of CU14 (DMSO-*d*₆)

¹³C NMR spectrum of CU15 (DMSO-*d*₆)

¹³C NMR spectrum of CU16 (DMSO-*d*₆)