Supporting Information

Synergistic Effect of Bimetallic Pd-Pt Nanocrystals for the Highly Efficient Methanol Oxidation Electrocatalysts

Respati K. Pramadewandaru,^a Young Wook Lee,^{*b} and Jong Wook Hong^{*a}

^aDepartment of Chemistry, University of Ulsan, Ulsan 44776, Korea. Email: <u>jwhong@ulsan.ac.kr</u> ^bDepartment of Education Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea. Email: <u>lyw2020@gnu.ac.kr</u>

Fig. S1. EDS spectra of (a) Pd-Pt alloy and (b) Pd@Pt core-shell nanocubes.

Fig. S2. The high-magnification XRD pattern of Pd-Pt alloy, Pd@Pt core-shell, Pd, and Pt nanocubes.

Fig. S3. The XPS survey spectra of Pd-Pt alloy, Pd@Pt core-shell, Pd, and Pt nanocubes.

Catalyst	EDS Element		ICP-OES	
	Pd	Pt	Pd	Pt

23.80

27.97

74.33

72.88

25.67

27.12

76.20

72.03

Pd-Pt alloy

Pd@Pt core-shell

Table S1. The comparison of EDS and ICP-OES results for Pd-Pt alloy and Pd@Pt core-shell nanocubes.

Catalyst	XRD pattern	TEM image
PdPt alloy	1.95 Å	1.95 Å
Pd@Pt core-shell	1.95 Å	1.95 Å
Pd	1.94 Å	1.94 Å
Pt	1.96 Å	1.96 Å

Table S2. Table as compared the lattice distance from XRD pattern and TEM images of different nanocubes.

Catalyst	Pt 4f _{5/2}		Pt 4f _{7/2}	
	Pt ²⁺	Pt ⁰	Pt ²⁺	Pt ⁰
Pd-Pt alloy	75.51 eV	74.72 eV	71.99 eV	71.36 eV
Pd@Pt core-shell	75.52 eV	74.79 eV	71.92 eV	71.39 eV
Pt	75.55 eV	75.00 eV	72.37 eV	71.58 eV
Pd	-	-	-	-

Table S3. XPS spectra of Pt 4f core levels for nanocubes with different atomic distribution.

Table S4. XPS spectra of Pd 3d core levels for nanocubes with different atomic distribution.

Catalyst -	Pd 3d _{3/2}		Pd 3d _{5/2}		
	Pd ²⁺	Pd ⁰	Pd ²⁺	Pd ⁰	
Pd-Pt alloy	342.90 eV	341.17 eV	336.76 eV	335.88 eV	
Pd@Pt core-shell	342.57 eV	341.12 eV	336.90 eV	335.85 eV	
Pd	342.18 eV	341.08 eV	336.48 eV	335.76 eV	
Pt	-	-	-	-	