Investigating the Hepatoprotective Potentiality of Marine-Derived Steroids as Promising Inhibitors of Liver Fibrosis

Mohamed A. Tammam^{a+}, Florbela Pereira^{b+}, Omnia Aly^{c+}, Mohamed Sebak^d, Yasser M. Diab

^a, Aldoushy Mahdy ^e and Amr El-Demerdash $^{f, g^*}$

^a Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt

^bLAQV REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829516 Caparica, Portugal

^c Department of Medical Biochemistry, National Research Centre, Cairo 12622, Egypt

^d Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University

^e Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut 71524, Egypt

^fDivision of Organic Chemistry, Department of Chemistry, Faculty of Sciences, Mansoura University, Mansoura 35516, Egypt

^g Department of Biochemistry and Metabolism, the John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK

⁺ These authors are equally contributed,

***Corresponding author**: Amr El-Demerdash (A.E-D), <u>a_eldemerdash83@mans.edu.eg</u>; <u>Amr.El-</u> Demerdash@jic.ac.uk

Fig. S1 ¹H NMR spectrum of 24*S*-methyl-cholest-5-en- 3β -ol (1) in CDCl₃.

Fig. S2 ESIMS spectrum of 24*S*-methyl-cholest-5-en- 3β -ol (1).

Fig. S3 ¹H NMR spectrum of gorgostan-5,25-dien- 3β -ol (2) in CDCl₃.

Fig. S4 ESIMS spectrum of gorgostan-5,25-dien- 3β -ol (2).

Fig. S5 ¹H NMR spectrum of gorgosterol (3) in CDCl₃.

Figure S6. ESIMS spectrum of gorgosterol (3).

All the steroids isolated possess a fused tetracyclic ring system with three six-membered rings and a five-membered ring as a common scaffold from core I, II or III, **Scheme S1.** The six-membered rings of the carbon skeleton are designated as A, B, C, and the five-membered as D. They all have two methyl groups and an eight- to eleven-carbon side chain at C-10, C-13 and C-17, respectively. The fused tetracyclic ring system and the side chain at C-17 are densely decorated by hydroxyl and methyl groups. The 4,5-bond on ring A and 5,6-bond on ring D can be either saturated or unsaturated.

Scheme S1. Reported steroid derivatives (1-26)

#	Core	Source, Ref	Name	_ R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸	R ⁹	R ¹⁰
1	Ι	soft coral ^a Lobophytum crissum, ¹	24S-methyl-cholest-5- en-3 β -ol		Н	Н	Н	Н	Н	Н			
2	Ι	soft coral ^a Lobophytum lobophytum, ²	gorgostan-5,25-dien-3β- ol		Н	Н	Н	Н	Н	Н			
3	Ι	soft coral ^a , <i>Lobophytum</i> crissum, ¹	gorgosterol		Н	Н	Н	Н	Н	Н			
4	Ι	Euphorbia pulcherimma, ³	24 <i>R</i> -methyl-cholest-5- en-3 β -ol		Н	Н	Н	Н	Н	Н			
5	Ι	Sinularia polydactyla ⁴	24-methyl-cholesta- 5,24-dien-3β-ol		Н	Н	Н	Н	Н	Н			
6	Ι	Sinularia sp., ⁵	24 <i>S</i> -methyl-cholest-5- en-1 α ,3 β -diol	,×, , , , , , , , , , , , , , , , , , ,	α-ОН	Н	Н	Н	Н	Н			
7	Ι	Sarcophyton glaucum ⁶	24 <i>S</i> -methyl-cholest-5- en-3β,25-diol	OH	Н	Н	Н	Н	Н	Н			
8	Ι	Sarcophyton glaucum ⁶	24S-methyl-cholest-5- en-3 β ,25 ξ ,26-triol	НОСОН	Н	Н	Н	Н	Н	Н			
#	Core	Source	Name	_ R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	R7	R ⁸	R ⁹	R ¹⁰
9	Ι	Sinularia dissecta, ⁷	24ζ-Methyl-cholest-5- en-1α,3β,11α-triol		α-ОН	α-ОН	Н	Н	Н	Н			
10	II	Sarcophyton glaucum, ⁸	dinosterol		Н	Н	Н	Н	Н	Н	CH ₃	Н	Н
11	Ι	Plexaurella grisea, ⁹	9α-hydroxygorgosterol		Н	Н	α-ОН	Н	Н	Н			
12	Ι	Plexaurella grisea9	11a-hydroxygorgosterol		Н	α-ОН	Н	Н	Н	Н			
13	Ι	Sinularia numerosa, ¹⁰	7β -hydroxygorgosterol		Н	Н	Н	α-ОН	Н	Н			

14	Ι	Klyxum flaccidum, 11	klyflaccisteroids G		Н	α-ОН	Н	α-ОН	Н	Н			
15	Ι	Sinularia dissecta, ⁷	1a,11a- dihydroxygorgosterol		α-ОН	α-ОН	Н	Н	Н	Н			
16	Ι	Klyxum flaccidum, ¹¹	klyflaccisteroids H		Н	α-ОН	Н	α-ОН	α-ОН	Н			
17	Ι	Klyxum flaccidum, ¹¹	klyflaccisteroids I		Н	α-ОН	Н	α-ОН	Н	Н			
18	Ι	Plexaurella grisea, ⁹	9a,11a,14a- trihydroxygorgosterol		Н	α-ОН	α-ОН	Н	Н	α-ОН			
19	II	Sarcophyton ehrenbergi, ¹²	ehrensteroid F		α-ОН	Н	Н	Н	Н	Н	Н	α-ОН	<i>β</i> -OH
20	Π	Sarcophyton ehrenbergi, ¹²	lobophysterol D		Н	α-ОН	Н	Н	α- ΟΗ	Н	Н	α-ОН	<i>β</i> -OH
#	Core	Source	Name	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	R 7	R ⁸	R ⁹	R ¹⁰
21	Π	Sarcophyton ehrenbergi, ¹²	sarcoaldesterol A		Н	α-ОН	Н	Н	Н	Н	Н	α-ОН	<i>β</i> -OH

22	Ι	Sinularia dissecta, ⁷	1 <i>a</i> ,11 <i>a</i> -dihydroxy-23- demethyIgorgosterol	α-ОН	α-ОН	Н	Н	Н	Н	 	
23	III	Sinularia dissecta, ¹³	dissesterol							 	
24	Ι	Sarcophyton glaucum, ¹⁴	glaucasterol	Н	Н	Н	Н	Н	Н	 	
25	Ι	Sarcophyton glaucum, ⁸	22-dehydrocodisterol	Н	Н	Н	Н	Н	Н	 	
26	Ι	Sarcophyton glaucum, ⁸	codisterol	Н	Н	Н	Н	Н	Н	 	

^a Steroidal compound recovered here in the current work from the crude extract of soft coral, the crude extract was tested *in vivo* as a hepatoprotective agent.

Steroid	ΔG_{B} , in kcal/mol					
derivatives	GST	HSD				
1ª	-7.7	-7.8				
2ª	-8.4	-8.2				
3 ^a	-8.4	-8.8				
4	-8.5	-8.5				
5	-7.0	-7.9				
6	-8.5	-8.1				
7	-7.5	-8.1				
8	-8.0	-7.8				
9	-7.2	-8.2				
10	-8.9	-8.7				
11	-8.8	-8.6				
12	-8.9	-9.1				
13	-9.1	-9.0				
14	-9.3	-9.4				
15	-8.9	-8.1				
16	-8.4	-9.0				
17	-9.3	-8.7				
18	-8.9	-8.8				
19	-8.8	-7.9				
20	-8.3	-7.9				
21	-8.6	-9.1				
22	-8.6	-8.5				
23	-8.6	-8.4				
24	-9.1	-9.1				
25	-8.7	-8.8				
26	-8.0	-8.3				

Table S1. Calculated free binding energies (ΔG_B , in kcal/mol) of the focused library of 26 steroid derivatives (1-26) for GST and HSD.

^aThe steroid derivatives recovered experimentally in current work.

References

- 1 M. P. Rahelivao, T. Lübken, M. Gruner, O. Kataeva, R. Ralambondrahety, H. Andriamanantoanina, M. P. Checinski, I. Bauer and H. J. Knölker, *Org Biomol Chem*, 2017, **15**, 2593–2608.
- 2 M. E. F. Hegazy, T. A. Mohamed, A. I. Elshamy, A. A. Hassanien, N. S. Abdel-Azim, M. A. Shreadah, I. I. Abdelgawad, E. M. Elkady and P. W. Paré, *Nat Prod Res*, 2016, **30**, 340–344.
- B. C. Sekula and W. R. Nes, *Phytochemistry*, 1980, **19**, 1509–1512.
- 4 M. A. Tammam, L. Rárová, M. Kvasnicová, G. Gonzalez, A. M. Emam, A. Mahdy, M. Strnad, E. Ioannou and V. Roussis, *Mar Drugs* 2020, **18**, 632.
- 5 J. H. Su, C. L. Lo, Y. Lu, Z. H. Wen, C. Y. Huang, C. F. Dai and J. H. Sheu, *Bull Chem Soc Jpn*, 2008, **81**, 1616–1620.
- 6 M. Kobayashi, F. Kanda, C. V. Lakshmana Rao, S. M. Dileep Kumar, G. Trimurtulu and C. B. Rao, *Chem Pharm Bull (Tokyo)*, 1990, **38**, 1724–1726.
- 7 B. M. Jagodzinska, J. S. Trimmer, W. Fenical and C. Djerassi, *Journal of Organic Chemistry*, 1985, **50**, 1435–1439.
- 8 M. Kobayashi, T. Ishizaka and H. Mitsuhashi, *Steroids*, 1982, 40, 209–221.
- 9 A. Rueda, E. Zubía, M. J. Ortega and J. Salvá, *Steroids*, 2001, 66, 897–904.
- 10 M. Qin, X. Li and B. Wang, *Chin J Chem*, 2012, **30**, 1278–1282.
- 11 W. R. Tseng, C. Y. Huang, Y. Y. Tsai, Y. S. Lin, T. L. Hwang, J. H. Su, P. J. Sung, C. F. Dai and J. H. Sheu, *Bioorg Med Chem Lett*, 2016, 26, 3253–3257.
- 12 N. T. Ngoc, T. T. H. Hanh, T. H. Quang, N. X. Cuong, N. H. Nam, D. T. Thao, D. C. Thung, P. Van Kiem and C. Van Minh, *Steroids*, 2021, **176**, 108932.
- N. P. Thao, N. H. Nam, N. X. Cuong, B. H. Tai, T. H. Quang, N. T. T. Ngan, B. T. T. Luyen, S. Y. Yang, C. H. Choi, S. Kim, D. Chae, Y. S. Koh, P. Van Kiem, C. Van Minh and Y. H. Kim, *Bull Korean Chem Soc*, 2013, 34, 949–952.
- 14 M. Kobayashi and H. Mitsuhashi, *Steroids*, 1982, 40, 665–672.