Exploration of Nonlinear Optical Enhancement in Acceptor-π-Donor Indacenodithiophene Based Derivatives *via* Structural Variations: A DFT Approach

Saba Abid,^{1,2} Muhammad Khalid,*^{1,2} Muhammad Sagir,³ Muhammad Imran,⁴ Ataualpa A. C. Braga,⁵ Suvash Chandra Ojha,*⁶

¹Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan

²Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan

³Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering &

Information Technology, Rahim Yar Khan, 64200, Pakistan

⁴Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia

⁵Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil

⁶Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University,

Luzhou 646000, China

*Corresponding authors E-mail addresses:

Dr. Muhammad Khalid (muhammad.khalid@kfueit.edu.pk; Khalid@iq.usp.br)

Dr. Suvash Chandra Ojha (suvash_ojha@swmu.edu.cn)

*Corresponding authors E-mail addresses:

Dr. Muhammad Khalid (<u>muhammad.khalid@kfueit.edu.pk</u>; <u>Khalid@iq.usp.br</u>)

Table S1: Computed transition energy (*eV*), maximum absorption wavelengths (λ_{max}), oscillator strengths (f_{os}) and transition natures of compound **TNPR** in chloroform at B3LYP functional with 6-311G(d,p) basis set

NO.	$\lambda_{\rm DFT}(nm)$	E(eV)	$f_{ m os}$	MO contributions
1	798.404	1.553	2.624	$H \rightarrow L (96\%), H-1 \rightarrow L+1 (2\%)$
2	740.027	1.675	0.001	H→L+1 (99%),
3	598.293	2.072	0.006	H-1→L (98%),
4	584.418	2.122	1.183	H-1→L+1 (88%), H→L (3%), H→L+2 (5%), H→L+4 (2%)
5	564.026	2.198	0.138	H→L+2 (87%), H-1→L+1 (6%), H-1→L+3 (5%)
6	554.317	2.237	0.000	H→L+3 (93%), H-1→L+2 (5%)

NO.	$\lambda_{\rm DFT}(nm)$	E(eV)	fos	MO contributions
1	484.446	2.559	3.611	H-2→L (13%), H-1→L+1 (31%), H→L (25%), H-7→L+1 (2%),
				$H-2 \rightarrow L+1$ (3%), $H \rightarrow L+1$ (9%), $H \rightarrow L+2$ (2%), $H \rightarrow L+4$ (4%)
2	472.051	2.627	0.191	H-2→L+1 (15%), H-1→L (38%), H→L+1 (23%), H-7→L (3%),
				H-2→L (5%), H→L (6%)
3	378.844	3.273	0.212	H-2→L (15%), H→L+4 (35%), H-7→L+1 (6%), H-1→L+1 (7%),
				H-1→L+3 (2%), H→L (8%), H→L+2 (9%)
4	361.186	3.433	0.019	$H-2\rightarrow L+1$ (13%), $H-1\rightarrow L+2$ (10%), $H\rightarrow L+1$ (17%), $H\rightarrow L+3$
				(13%), H-7 \rightarrow L (8%), H-2 \rightarrow L (3%), H-2 \rightarrow L+3 (5%), H-1 \rightarrow L
				(4%), H→L (8%), H→L+5 (3%)
5	353.302	3.509	0.055	H-2 \rightarrow L+3 (13%), H-1 \rightarrow L+3 (16%), H \rightarrow L+1 (23%), H-7 \rightarrow L+3
				(3%), H-2 \rightarrow L+1 (3%), H-2 \rightarrow L+2 (5%), H-1 \rightarrow L+2 (7%), H \rightarrow L+2
				(4%), H→L+3 (8%), H→L+4 (3%)
6	352.508	3.517	0.109	$H-2\rightarrow L+2$ (18%), $H-1\rightarrow L+2$ (17%), $H-1\rightarrow L+3$ (12%), $H\rightarrow L$
				(16%), $H \rightarrow L+2$ (10%), $H-7 \rightarrow L+2$ (3%), $H-7 \rightarrow L+3$ (2%), (2%) (2%), (2%) (2%) (2%) (2%) (2%) (2%) (2%) (2%) (2%) (2\%) (2%) (2\%) (2\%)
				2→L+3 (4%), H→L+1 (3%), H→L+3 (2%)

Table S2: Computed transition energy (eV), maximum absorption wavelengths (λ_{max}), oscillator strengths (f_{os}) and transition natures of compound **TNPR** in chloroform at CAM-B3LYP functional with 6-311G(d,p) basis set

Table S3: Computed transition energy (*eV*), maximum absorption wavelengths (λ_{max}), oscillator strengths (f_{os}) and transition natures of compound **TNPR** in chloroform at M06 functional with 6-311G(d,p) basis set

Vos) u						
NO.	$\lambda_{\rm DFT}(nm)$	E(eV)	f_{os}	MO contributions		
1	706.785	1.754	2.960	H→L (86%), H-1→L+1 (8%)		
2	658.895	1.882	0.016	H→L+1 (89%), H-1→L (7%)		
3	538.757	2.301	0.064	H-1→L (83%), H-2→L+1 (5%), H→L+1 (7%)		
4	525.513	2.359	0.921	H-1 \rightarrow L+1 (75%), H \rightarrow L (10%), H-2 \rightarrow L (5%), H \rightarrow L+2 (3%),		
				H→L+4 (2%)		
5	502.530	2.467	0.166	H-1→L+3 (10%), H→L+2 (77%), H-1→L+1 (6%)		
6	493.214	2.514	0.002	H-1→L+2 (12%), H→L+3 (82%),		

Table S4: Computed transition energy (eV), maximum absorption wavelengths (λ_{max}), oscillator strengths (f_{os}) and transition natures of compound **TNPR** in chloroform at MPW1PW91 functional with 6-311G(d,p) basis set

ouoio							
NO.	$\lambda_{\rm DFT}(nm)$	E(eV)	$f_{ m os}$	MO contributions			
1	782.926	1.584	3.495	H→L (93%), H-1→L+1 (5%)			
2	698.660	1.775	0.001	H→L+1 (96%), H-1→L (3%)			
3	573.258	2.163	0.001	H-1→L (93%), H-2→L+1 (3%), H→L+1 (3%)			
4	557.583	2.224	0.432	H→L+2 (82%), H-1→L+1 (6%), H-1→L+3 (7%), H→L (3%)			
5	546.668	2.268	0.001	H→L+3 (89%), H-1→L+2 (8%)			
6	544.053	2.279	0.419	H-1→L+1 (82%), H→L (4%), H→L+2 (7%), H→L+4 (2%)			

Table S5: Computed transition energy (*eV*), maximum absorption wavelengths (λ_{max}), oscillator strengths (f_{os}) and transition natures of compound **TNPR** in chloroform at ω B97XD functional with 6-311G(d,p) basis set

$IO: \lambda_{DFT}(nm) = E(ev) = \int_{0.5}^{0.5} IVIO \text{ contributions}$

1	454.638	2.727	3.145	H-2→L (15%), H-1→L+1 (33%), H→L (11%), H→L+1 (10%), H-
				7→L+1 (5%), H-2→L+1 (8%), H-1→L+3 (2%), H→L+4 (4%)
2	444.420	2.790	0.607	H-2→L (12%), H-2→L+1 (18%), H-1→L (38%), H-7→L (5%), H-
				1→L+2 (2%), H→L (4%), H→L+1 (9%)
3	362.527	3.420	0.560	H→L+4 (52%), H-7→L+1 (5%), H-2→L (7%), H-2→L+4 (2%),
				H-1 \rightarrow L+1 (3%), H-1 \rightarrow L+3 (2%), H-1 \rightarrow L+5 (3%), H \rightarrow L (2%),
				H→L+2 (6%)
4	342.706	3.618	0.029	H-2→L+3 (20%), H-1→L+2 (23%), H→L+3 (12%), H-24→L+2
				(3%), H-23 \rightarrow L+3 (4%), H-20 \rightarrow L+1 (3%), H-7 \rightarrow L (3%), H-
				7→L+2 (3%), H-2→L+1 (3%), H-1→L+3 (3%)
5	338.477	3.663	0.054	H-2→L+2 (24%), H-1→L+3 (21%), H-24→L+3 (4%), H-23→L+2
				(4%), H-23 \rightarrow L+3 (2%), H-20 \rightarrow L (2%), H-7 \rightarrow L+3 (5%), H-
				1→L+2 (4%), H→L+2 (5%), H→L+4 (7%)
6	335.655	3.694	0.007	H-24 \rightarrow L+2 (24%), H-24 \rightarrow L+3 (12%), H-23 \rightarrow L+2 (11%), H-
				$26 \rightarrow L+2$ (2%), H-24 $\rightarrow L$ (5%), H-23 $\rightarrow L+3$ (5%), H-21 $\rightarrow L+2$
				(7%), H-21→L+3 (4%)

Table S6: Cartesian coordinates of TNPR

A1	tom	X-axis	Y-axis	Z-axis
	С	-0.77926	-1.23708	0.545443
	С	0.59375	-1.36381	0.50919
	С	1.344184	-0.2005	0.352007
	С	0.732246	1.062195	0.235569
	С	-0.63951	1.191972	0.303464
	С	-1.38987	0.028736	0.462267
	Н	1.076002	-2.33631	0.573084
	Н	-1.12284	2.162399	0.219167
	С	2.764793	0.017902	0.239744
	С	3.054492	1.33837	0.017987
	С	4.433136	1.607114	-0.14494
	С	5.178168	0.446155	-0.02148
	S	4.169785	-0.96411	0.289877
	С	-5.23504	-0.6436	0.610001
	С	-4.49275	-1.81171	0.673955
	С	-3.10828	-1.53009	0.616518
	С	-2.81269	-0.19579	0.517943
	S	-4.21696	0.786814	0.467677
	С	-6.66059	-0.43459	0.643906
	С	-7.33176	0.681212	1.098364
	S	-7.78459	-1.59541	-0.00379
	С	-8.71962	0.603712	0.943977
	Н	-6.82376	1.519592	1.56112
	С	-9.15284	-0.57289	0.369073
	Н	-9.40232	1.377059	1.278014
	С	6.602044	0.235529	-0.10091

С	7.259496	-0.90405	-0.51408
S	7.742881	1.427892	0.44934
С	8.650855	-0.81733	-0.4108
Н	6.737008	-1.77238	-0.89907
С	9.1035	0.388197	0.08688
Н	9.319248	-1.61875	-0.70535
С	-1.82798	-2.35268	0.599817
С	1.774239	2.160017	-0.01055
С	-10.5077	-0.9423	0.072357
С	-11.0567	-2.20527	-0.15765
S	-11.6956	0.323279	-0.01926
С	-12.4283	-2.12051	-0.37209
С	-12.9695	-0.83737	-0.32968
Н	-13.055	-2.99081	-0.54596
С	10.46897	0.79071	0.265655
С	10.98644	1.940359	0.86815
S	11.72192	-0.26644	-0.31894
С	12.37684	1.93244	0.849891
С	12.96818	0.821337	0.25422
Н	12.97841	2.731421	1.274262
С	-10.3129	-3.50019	-0.14767
Н	-9.65163	-3.59911	-1.01559
Н	-9.69443	-3.60801	0.749154
Н	-11.0144	-4.3372	-0.17461
С	10.19287	3.049333	1.475991
Н	9.587099	3.576201	0.730597
Н	9.512851	2.686983	2.25449
Н	10.8609	3.782205	1.933968
С	-5.06432	-3.18203	0.834866
Н	-6.02309	-3.16199	1.359368
Н	-5.22352	-3.66952	-0.13459
Н	-4.38271	-3.8157	1.409187
С	4.992742	2.952488	-0.47073
Н	5.153966	3.554003	0.431938
Н	5.946706	2.877555	-0.9983
Н	4.300848	3.50774	-1.11049
С	-1.8212	-3.17805	-0.69435
С	-2.34741	-4.46378	-0.73389
С	-1.36515	-2.5941	-1.8788
С	-2.40357	-5.15636	-1.93993
Н	-2.70506	-4.93807	0.173967
С	-1.4193	-3.29217	-3.07967
Н	-0.96242	-1.58804	-1.85579

С	-1.94297	-4.58485	-3.10936
Н	-2.81058	-6.16273	-1.96127
Н	-1.9715	-5.1147	-4.05604
С	-1.59222	-3.16767	1.86668
С	-0.64192	-4.19367	1.888331
С	-2.23853	-2.82944	3.044759
С	-0.36915	-4.85722	3.070847
Н	-0.1269	-4.47986	0.976571
С	-1.96278	-3.50256	4.236535
Н	-2.97437	-2.03006	3.073402
С	-1.02209	-4.52685	4.253551
Н	0.367091	-5.65525	3.080443
С	1.462534	2.742233	-1.38956
С	0.523172	3.767335	-1.5384
С	2.008067	2.165137	-2.52577
С	0.161931	4.194641	-2.80352
Н	0.079602	4.233447	-0.66418
С	1.636322	2.59383	-3.80113
Н	2.731595	1.357063	-2.45506
С	0.708646	3.620082	-3.94591
Н	-0.56483	4.994086	-2.91188
Н	0.407535	3.975209	-4.92425
С	1.827436	3.189354	1.119535
С	2.334502	4.474896	0.909661
С	1.463998	2.818601	2.405462
С	2.457771	5.352777	1.972343
Н	2.624235	4.793436	-0.08599
С	1.591329	3.70424	3.475817
Н	1.072393	1.82752	2.616914
С	2.089934	4.985211	3.26143
Н	2.847431	6.351459	1.799448
Ο	-0.98051	-2.79963	-4.26078
0	2.230933	1.945489	-4.82847
С	-0.42811	-1.50052	-4.27949
Н	-1.16246	-0.7449	-3.97356
Н	0.453954	-1.42486	-3.63022
С	1.889126	2.3308	-6.14234
Н	2.468342	1.694287	-6.81044
Н	0.820511	2.180566	-6.3401
С	14.372	0.714781	0.186056
С	15.23871	-0.22326	-0.31747
Н	14.8296	1.586956	0.644562
С	-14.3532	-0.64188	-0.51567

С	-15.1694	0.461941	-0.53504
Н	-14.842	-1.59813	-0.68111
С	16.09885	-2.1673	-1.34476
С	16.23926	-3.38156	-1.98467
С	17.526	-3.84386	-2.22815
С	18.62594	-3.0891	-1.83066
С	18.47835	-1.86541	-1.18625
С	17.19191	-1.39621	-0.93876
Н	15.35969	-3.94441	-2.28113
Н	17.67916	-4.79411	-2.72864
Н	19.62601	-3.46147	-2.02679
Н	19.36194	-1.31324	-0.89546
С	-18.2825	2.486128	-0.93698
С	-17.0386	1.8884	-0.75782
С	-15.9198	2.700325	-0.55078
С	-15.9939	4.077418	-0.5123
С	-17.2385	4.667175	-0.69076
С	-18.363	3.874256	-0.90119
Н	-19.1826	1.910291	-1.10493
Н	-15.0965	4.665376	-0.34731
Н	-17.3393	5.747106	-0.66801
Н	-19.3293	4.347321	-1.04162
С	16.69107	-0.16498	-0.2914
С	14.84877	-1.47787	-0.98133
С	-14.7217	1.85728	-0.39752
С	-16.6096	0.473666	-0.7335
С	17.49788	0.824232	0.223744
С	-17.4631	-0.59919	-0.85523
0	13.72424	-1.88355	-1.19798
0	-13.5909	2.258128	-0.20549
С	17.01787	2.010891	0.840564
Ν	16.66979	2.989347	1.348564
С	18.91756	0.770614	0.195485
Ν	20.0733	0.775766	0.198388
С	-17.0551	-1.95866	-0.78875
Ν	-16.7655	-3.07671	-0.73749
С	-18.8647	-0.46626	-1.04731
N	-20.0083	-0.41202	-1.20515
Н	-0.12806	-1.30944	-5.30944
H	2.146062	3.379813	-6.33385
H	-0.79245	-5.06716	5.164217
0	-2.66272	-3.08471	5.315143
Ċ	-2 42544	-3.72631	6.549192

Н	-3.07876	-3.24585	7.276739
Н	-2.66774	-4.79505	6.500112
Н	-1.38309	-3.60842	6.869939
Н	2.193597	5.693962	4.074375
Ο	1.201086	3.223905	4.678323
С	1.305358	4.075613	5.798111
Н	0.685913	4.973313	5.680233
Н	0.946183	3.504789	6.653798
Н	2.34441	4.37748	5.97901

Table S7: Cartesian coordinates of TNPD1

Atom	X-axis	V-axis	Z-axis
C	-0.16107	-0.59366	1.714775
С	1.216395	-0.64691	1.698085
С	1.895584	0.453056	1.178532
С	1.2061	1.581706	0.698193
С	-0.1696	1.661179	0.777658
С	-0.84936	0.559835	1.292949
Н	1.752925	-1.53645	2.020286
Н	-0.70875	2.531069	0.409846
С	3.294912	0.681803	0.916978
С	3.494204	1.856209	0.240136
С	4.839209	2.087992	-0.12916
С	5.655648	1.060098	0.313219
S	4.751783	-0.18622	1.17035
С	-4.6477	-0.31058	1.60091
С	-3.83417	-1.36904	1.960837
С	-2.46778	-1.01626	1.841576
С	-2.25691	0.267095	1.412061
S	-3.725	1.103576	1.105679
С	-6.08918	-0.21056	1.562006
С	-6.87045	0.884117	1.838191
S	-7.08358	-1.53905	1.021651
С	-8.24622	0.660411	1.648971
Н	-6.45512	1.817993	2.201144
С	-8.54867	-0.61006	1.219571
Н	-9.00797	1.405212	1.851984
С	7.077994	0.869856	0.179724
С	7.762599	-0.32674	0.139616
S	8.192817	2.206099	0.151367
С	9.150539	-0.17725	0.067414

H 7.261026 -1.28777 0.145108 C 9.574286 1.136113 0.051871 H 9.836098 -1.01584 0.016289 C -1.13629 -1.73375 2.013005 C 2.166795 2.567222 0.021389 C -9.84972 -1.15412 0.909653 C -10.2976 -2.45763 0.882381 S -11.1344 -0.04383 0.49197 C -11.6652 -2.54328 0.528497 C -12.2746 -1.34192 0.286507 H -12.1818 -3.49413 0.440119 C 10.92442 1.605543 -0.07309 C 11.43337 2.900165 0.047144 S 12.17075 0.439546 -0.41488 C 12.81385 2.915377 -0.13027 C 13.40299 1.681527 -0.38586 H 13.40761 3.823056 -0.07005 C -9.47638 -3.66898 1.186448 H -8.8201 -3.93908 0.350779 H -8.8395 -3.52225 2.064324 H -10.1248 -4.5272 1.380958 C 10.64164 4.131561 0.340894 H 9.943326 4.372341 -0.46829 H 10.05504 4.030677 1.260448 H 11.30886 4.987531 0.464415 C -4.32877 -2.68815 2.458365 H -5.31911 -2.59994 2.912025
C 9.574286 1.136113 0.051871 H 9.836098 -1.01584 0.016289 C -1.13629 -1.73375 2.013005 C 2.166795 2.567222 0.021389 C -9.84972 -1.15412 0.909653 C -10.2976 -2.45763 0.882381 S -11.1344 -0.04383 0.49197 C -11.6652 -2.54328 0.528497 C -12.2746 -1.34192 0.286507 H -12.1818 -3.49413 0.440119 C 10.92442 1.605543 -0.07309 C 11.43337 2.900165 0.047144 S 12.17075 0.439546 -0.41488 C 12.81385 2.915377 -0.13027 C 13.40299 1.681527 -0.38586 H 13.40761 3.823056 -0.07005 C -9.47638 -3.66898 1.186448 H -8.8201 -3.93908 0.350779 H -8.8395 -3.52225 2.064324 H -10.1248 -4.5272 1.380958 C 10.64164 4.131561 0.340894 H 9.943326 4.372341 -0.46829 H 10.05504 4.030677 1.260448 H 11.30886 4.987531 0.464415 C -4.32877 -2.68815 2.458365 H -5.31911 -2.59994 2.912025 H -4.3963 -3.42637 1.650194
H 9.836098 -1.01584 0.016289 C -1.13629 -1.73375 2.013005 C 2.166795 2.567222 0.021389 C -9.84972 -1.15412 0.909653 C -10.2976 -2.45763 0.882381 S -11.1344 -0.04383 0.49197 C -11.6652 -2.54328 0.528497 C -12.2746 -1.34192 0.286507 H -12.1818 -3.49413 0.440119 C 10.92442 1.605543 -0.07309 C 11.43337 2.900165 0.047144 S 12.17075 0.439546 -0.41488 C 12.81385 2.915377 -0.13027 C 13.40299 1.681527 -0.38586 H 13.40761 3.823056 -0.07005 C -9.47638 -3.66898 1.186448 H -8.8395 -3.52225 2.064324 H -10.1248 -4.5272 1.380958 C 10.64164 4.131561 0.340894<
C-1.13629-1.733752.013005C2.1667952.5672220.021389C-9.84972-1.154120.909653C-10.2976-2.457630.882381S-11.1344-0.043830.49197C-11.6652-2.543280.528497C-12.2746-1.341920.286507H-12.1818-3.494130.440119C10.924421.605543-0.07309C11.433372.9001650.047144S12.170750.439546-0.41488C12.813852.915377-0.13027C13.402991.681527-0.38586H13.407613.823056-0.07005C-9.47638-3.668981.186448H-8.8201-3.939080.350779H-8.8395-3.522252.064324H-10.1248-4.52721.380958C10.641644.1315610.340894H9.9433264.372341-0.46829H10.055044.0306771.260448H11.308864.9875310.464415C-4.32877-2.688152.458365H-5.31911-2.599942.912025H-4.3963-3.426371.650194H-3.64803-3.093493.212817C5.2938653.247928-0.95197H5.4915394.132648-0.33492H6.205463.01715-1.50847H
C 2.166795 2.567222 0.021389 C -9.84972 -1.15412 0.909653 C -10.2976 -2.45763 0.882381 S -11.1344 -0.04383 0.49197 C -11.6652 -2.54328 0.528497 C -12.2746 -1.34192 0.286507 H -12.1818 -3.49413 0.440119 C 10.92442 1.605543 -0.07309 C 11.43337 2.900165 0.047144 S 12.17075 0.439546 -0.41488 C 12.81385 2.915377 -0.13027 C 13.40299 1.681527 -0.38586 H 13.40761 3.823056 -0.07005 C -9.47638 -3.66898 1.186448 H -8.8201 -3.93908 0.350779 H -8.8395 -3.52225 2.064324 H -10.1248 -4.5272 1.380958 C 10.64164 4.131561 </td
C -9.84972 -1.15412 0.909653 C -10.2976 -2.45763 0.882381 S -11.1344 -0.04383 0.49197 C -11.6652 -2.54328 0.528497 C -12.2746 -1.34192 0.286507 H -12.1818 -3.49413 0.440119 C 10.92442 1.605543 -0.07309 C 11.43337 2.900165 0.047144 S 12.17075 0.439546 -0.41488 C 12.81385 2.915377 -0.13027 C 13.40299 1.681527 -0.38586 H 13.40761 3.823056 -0.07005 C -9.47638 -3.66898 1.186448 H -8.8201 -3.93908 0.350779 H -8.8395 -3.52225 2.064324 H -10.1248 -4.5272 1.380958 C 10.64164 4.131561 0.340894 H 9.943326 4.372341 </td
C -10.2976 -2.45763 0.882381 S -11.1344 -0.04383 0.49197 C -11.6652 -2.54328 0.528497 C -12.2746 -1.34192 0.286507 H -12.1818 -3.49413 0.440119 C 10.92442 1.605543 -0.07309 C 11.43337 2.900165 0.047144 S 12.17075 0.439546 -0.41488 C 12.81385 2.915377 -0.13027 C 13.40299 1.681527 -0.38586 H 13.40761 3.823056 -0.07005 C -9.47638 -3.66898 1.186448 H -8.8201 -3.93908 0.350779 H -8.8395 -3.52225 2.064324 H -10.1248 -4.5272 1.380958 C 10.64164 4.131561 0.340894 H 9.943326 4.372341 -0.46829 H 10.05504 4.030677 1.260448 H 11.30886 4.987531 0.464415 C -4.32877 -2.68815 2.458365 H -5.31911 -2.59994 2.912025 H -4.3963 -3.42637 1.650194 H -3.64803 -3.09349 3.212817 C 5.293865 3.247928 -0.95197 H 5.491539 4.132648 -0.33492 H 6.20546 3.01715 -1.50847
S -11.1344 -0.04383 0.49197 C -11.6652 -2.54328 0.528497 C -12.2746 -1.34192 0.286507 H -12.1818 -3.49413 0.440119 C 10.92442 1.605543 -0.07309 C 11.43337 2.900165 0.047144 S 12.17075 0.439546 -0.41488 C 12.81385 2.915377 -0.13027 C 13.40299 1.681527 -0.38586 H 13.40761 3.823056 -0.07005 C -9.47638 -3.66898 1.186448 H -8.8201 -3.93908 0.350779 H -8.8395 -3.52225 2.064324 H -10.1248 -4.5272 1.380958 C 10.64164 4.131561 0.340894 H 9.943326 4.372341 -0.46829 H 10.05504 4.030677 1.260448 H 11.30886 4.987531 </td
C-11.6652-2.543280.528497C-12.2746-1.341920.286507H-12.1818-3.494130.440119C10.924421.605543-0.07309C11.433372.9001650.047144S12.170750.439546-0.41488C12.813852.915377-0.13027C13.402991.681527-0.38586H13.407613.823056-0.07005C-9.47638-3.668981.186448H-8.8201-3.939080.350779H-8.8395-3.522252.064324H-10.1248-4.52721.380958C10.641644.1315610.340894H9.9433264.372341-0.46829H10.055044.0306771.260448H11.308864.9875310.464415C-4.32877-2.688152.458365H-5.31911-2.599942.912025H-4.3963-3.426371.650194H-3.64803-3.093493.212817C5.2938653.247928-0.95197H5.4915394.132648-0.33492H6.205463.01715-1.50847H4.5324522.5530501.67677
C -12.2746 -1.34192 0.286507 H -12.1818 -3.49413 0.440119 C 10.92442 1.605543 -0.07309 C 11.43337 2.900165 0.047144 S 12.17075 0.439546 -0.41488 C 12.81385 2.915377 -0.13027 C 13.40299 1.681527 -0.38586 H 13.40761 3.823056 -0.07005 C -9.47638 -3.66898 1.186448 H -8.8201 -3.93908 0.350779 H -8.8395 -3.52225 2.064324 H -10.1248 -4.5272 1.380958 C 10.64164 4.131561 0.340894 H 9.943326 4.372341 -0.46829 H 10.05504 4.030677 1.260448 H 11.30886 4.987531 0.464415 C -4.32877 -2.68815 2.458365 H -5.31911 -2.59994 2.912025 H -4.3963 -3.42637 1.650194 H -3.64803 -3.09349 3.212817 C 5.293865 3.247928 -0.95197 H 6.20546 3.01715 -1.50847
H -12.1818 -3.49413 0.440119 C 10.92442 1.605543 -0.07309 C 11.43337 2.900165 0.047144 S 12.17075 0.439546 -0.41488 C 12.81385 2.915377 -0.13027 C 13.40299 1.681527 -0.38586 H 13.40761 3.823056 -0.07005 C -9.47638 -3.66898 1.186448 H -8.8201 -3.93908 0.350779 H -8.8395 -3.52225 2.064324 H -10.1248 -4.5272 1.380958 C 10.64164 4.131561 0.340894 H 9.943326 4.372341 -0.46829 H 10.05504 4.030677 1.260448 H 11.30886 4.987531 0.464415 C -4.32877 -2.68815 2.458365 H -5.31911 -2.59994 2.912025 H -4.3963 -3.42637 1.650194 H -3.64803 -3.09349 3.212817 C 5.293865 3.247928 -0.95197 H 5.491539 4.132648 -0.33492 H 6.20546 3.01715 -1.50847
C 10.92442 1.605543 -0.07309 C 11.43337 2.900165 0.047144 S 12.17075 0.439546 -0.41488 C 12.81385 2.915377 -0.13027 C 13.40299 1.681527 -0.38586 H 13.40761 3.823056 -0.07005 C -9.47638 -3.66898 1.186448 H -8.8201 -3.93908 0.350779 H -8.8395 -3.52225 2.064324 H -10.1248 -4.5272 1.380958 C 10.64164 4.131561 0.340894 H 9.943326 4.372341 -0.46829 H 10.05504 4.030677 1.260448 H 11.30886 4.987531 0.464415 C -4.32877 -2.68815 2.458365 H -5.31911 -2.59994 2.912025 H -3.64803 -3.09349 3.212817 C 5.293865 3.247928 -0.95197 H 5.491539 4.132648 -0.33492 H 6.20546 3.01715 -1.50847
C11.433372.900165 0.047144 S12.17075 0.439546 -0.41488 C12.81385 2.915377 -0.13027 C13.40299 1.681527 -0.38586 H13.40761 3.823056 -0.07005 C -9.47638 -3.66898 1.186448 H -8.8201 -3.93908 0.350779 H -8.8395 -3.52225 2.064324 H -10.1248 -4.5272 1.380958 C 10.64164 4.131561 0.340894 H 9.943326 4.372341 -0.46829 H 10.05504 4.030677 1.260448 H 11.30886 4.987531 0.464415 C -4.32877 -2.68815 2.458365 H -5.31911 -2.59994 2.912025 H -3.64803 -3.09349 3.212817 C 5.293865 3.247928 -0.95197 H 5.491539 4.132648 -0.33492 H 6.20546 3.01715 -1.50847
S 12.17075 0.439546 -0.41488 C 12.81385 2.915377 -0.13027 C 13.40299 1.681527 -0.38586 H 13.40761 3.823056 -0.07005 C -9.47638 -3.66898 1.186448 H -8.8201 -3.93908 0.350779 H -8.8395 -3.52225 2.064324 H -10.1248 -4.5272 1.380958 C 10.64164 4.131561 0.340894 H 9.943326 4.372341 -0.46829 H 10.05504 4.030677 1.260448 H 11.30886 4.987531 0.464415 C -4.32877 -2.68815 2.458365 H -5.31911 -2.59994 2.912025 H -4.3963 -3.42637 1.650194 H -3.64803 -3.09349 3.212817 C 5.293865 3.247928 -0.95197 H 5.491539 4.132648 -0.33492 H 6.20546 3.01715 -1.50847
C 12.81385 2.915377 -0.13027 C 13.40299 1.681527 -0.38586 H 13.40761 3.823056 -0.07005 C -9.47638 -3.66898 1.186448 H -8.8201 -3.93908 0.350779 H -8.8395 -3.52225 2.064324 H -10.1248 -4.5272 1.380958 C 10.64164 4.131561 0.340894 H 9.943326 4.372341 -0.46829 H 10.05504 4.030677 1.260448 H 11.30886 4.987531 0.464415 C -4.32877 -2.68815 2.458365 H -5.31911 -2.59994 2.912025 H -4.3963 -3.09349 3.212817 C 5.293865 3.247928 -0.95197 H 5.491539 4.132648 -0.33492 H 6.20546 3.01715 -1.50847
C 13.40299 1.681527 -0.38586 H 13.40761 3.823056 -0.07005 C -9.47638 -3.66898 1.186448 H -8.8201 -3.93908 0.350779 H -8.8395 -3.52225 2.064324 H -10.1248 -4.5272 1.380958 C 10.64164 4.131561 0.340894 H 9.943326 4.372341 -0.46829 H 10.05504 4.030677 1.260448 H 11.30886 4.987531 0.464415 C -4.32877 -2.68815 2.458365 H -5.31911 -2.59994 2.912025 H -4.3963 -3.42637 1.650194 H -3.64803 -3.09349 3.212817 C 5.293865 3.247928 -0.95197 H 5.491539 4.132648 -0.33492 H 6.20546 3.01715 -1.50847
H 13.40761 3.823056 -0.07005 C -9.47638 -3.66898 1.186448 H -8.8201 -3.93908 0.350779 H -8.8395 -3.52225 2.064324 H -10.1248 -4.5272 1.380958 C 10.64164 4.131561 0.340894 H 9.943326 4.372341 -0.46829 H 10.05504 4.030677 1.260448 H 11.30886 4.987531 0.464415 C -4.32877 -2.68815 2.458365 H -5.31911 -2.59994 2.912025 H -4.3963 -3.42637 1.650194 H -3.64803 -3.09349 3.212817 C 5.293865 3.247928 -0.95197 H 5.491539 4.132648 -0.33492 H 6.20546 3.01715 -1.50847
C -9.47638 -3.66898 1.186448 H -8.8201 -3.93908 0.350779 H -8.8395 -3.52225 2.064324 H -10.1248 -4.5272 1.380958 C 10.64164 4.131561 0.340894 H 9.943326 4.372341 -0.46829 H 10.05504 4.030677 1.260448 H 11.30886 4.987531 0.464415 C -4.32877 -2.68815 2.458365 H -5.31911 -2.59994 2.912025 H -4.3963 -3.42637 1.650194 H -3.64803 -3.09349 3.212817 C 5.293865 3.247928 -0.95197 H 5.491539 4.132648 -0.33492 H 6.20546 3.01715 -1.50847
H-8.8201-3.939080.350779H-8.8395-3.522252.064324H-10.1248-4.52721.380958C10.641644.1315610.340894H9.9433264.372341-0.46829H10.055044.0306771.260448H11.308864.9875310.464415C-4.32877-2.688152.458365H-5.31911-2.599942.912025H-4.3963-3.426371.650194H-3.64803-3.093493.212817C5.2938653.247928-0.95197H5.4915394.132648-0.33492H6.205463.01715-1.50847
H-8.8395-3.522252.064324H-10.1248-4.52721.380958C10.641644.1315610.340894H9.9433264.372341-0.46829H10.055044.0306771.260448H11.308864.9875310.464415C-4.32877-2.688152.458365H-5.31911-2.599942.912025H-4.3963-3.426371.650194H-3.64803-3.093493.212817C5.2938653.247928-0.95197H5.4915394.132648-0.33492H6.205463.01715-1.50847H4.5224522.5220501.67677
H-10.1248-4.52721.380958C10.641644.1315610.340894H9.9433264.372341-0.46829H10.055044.0306771.260448H11.308864.9875310.464415C-4.32877-2.688152.458365H-5.31911-2.599942.912025H-4.3963-3.426371.650194H-3.64803-3.093493.212817C5.2938653.247928-0.95197H5.4915394.132648-0.33492H6.205463.01715-1.50847
C10.641644.1315610.340894H9.9433264.372341-0.46829H10.055044.0306771.260448H11.308864.9875310.464415C-4.32877-2.688152.458365H-5.31911-2.599942.912025H-4.3963-3.426371.650194H-3.64803-3.093493.212817C5.2938653.247928-0.95197H5.4915394.132648-0.33492H6.205463.01715-1.50847
H9.9433264.372341-0.46829H10.055044.0306771.260448H11.308864.9875310.464415C-4.32877-2.688152.458365H-5.31911-2.599942.912025H-4.3963-3.426371.650194H-3.64803-3.093493.212817C5.2938653.247928-0.95197H5.4915394.132648-0.33492H6.205463.01715-1.50847
H10.055044.0306771.260448H11.308864.9875310.464415C-4.32877-2.688152.458365H-5.31911-2.599942.912025H-4.3963-3.426371.650194H-3.64803-3.093493.212817C5.2938653.247928-0.95197H5.4915394.132648-0.33492H6.205463.01715-1.50847
H11.308864.9875310.464415C-4.32877-2.688152.458365H-5.31911-2.599942.912025H-4.3963-3.426371.650194H-3.64803-3.093493.212817C5.2938653.247928-0.95197H5.4915394.132648-0.33492H6.205463.01715-1.50847H4.5224522.5220501.67677
C-4.32877-2.688152.458365H-5.31911-2.599942.912025H-4.3963-3.426371.650194H-3.64803-3.093493.212817C5.2938653.247928-0.95197H5.4915394.132648-0.33492H6.205463.01715-1.50847H4.5224522.5220501.67677
H-5.31911-2.599942.912025H-4.3963-3.426371.650194H-3.64803-3.093493.212817C5.2938653.247928-0.95197H5.4915394.132648-0.33492H6.205463.01715-1.50847H4.5224522.5220501.67677
H-4.3963-3.426371.650194H-3.64803-3.093493.212817C5.2938653.247928-0.95197H5.4915394.132648-0.33492H6.205463.01715-1.50847H4.5224522.5220501.67677
H-3.64803-3.093493.212817C5.2938653.247928-0.95197H5.4915394.132648-0.33492H6.205463.01715-1.50847H4.5224522.5220501.67677
C5.2938653.247928-0.95197H5.4915394.132648-0.33492H6.205463.01715-1.50847H4.5224522.5220501.67677
H5.4915394.132648-0.33492H6.205463.01715-1.50847H4.5224522.5220501.67677
H 6.20546 3.01715 -1.50847
ц 4.502452 2.502050 1. <i>сасаа</i>
п 4.322432 3.323939 -1.0/0//
C -1.05025 -2.79986 0.908673
C -1.56229 -4.07756 1.104676
C -0.53332 -2.46227 -0.34484
C -1.54928 -5.00044 0.063138
Н -1.96266 -4.36411 2.071646
C -0.51001 -3.39234 -1.37745
Н -0.14014 -1.46633 -0.51265
C -1.027 -4.67135 -1.17267
Н -1.94778 -5.9973 0.22596
Н -0.99741 -5.38447 -1.99024

С	-0.87028	-2.25874	3.416962
С	0.112533	-3.22633	3.646996
С	-1.52495	-1.69709	4.501831
С	0.409542	-3.61352	4.941712
Н	0.634878	-3.68272	2.811796
С	-1.22487	-2.09138	5.806529
Н	-2.28635	-0.93366	4.363301
С	-0.25095	-3.05899	6.032449
Н	1.171274	-4.3678	5.114649
С	1.737656	2.589293	-1.44749
С	0.768311	3.487206	-1.90324
С	2.186309	1.596339	-2.3058
С	0.276935	3.377182	-3.19235
Н	0.39527	4.268147	-1.24825
С	1.67766	1.479432	-3.59901
Н	2.931367	0.871523	-1.98675
С	0.717076	2.377681	-4.05277
Н	-0.47416	4.079463	-3.54106
Н	0.310106	2.311455	-5.05466
С	2.211089	3.932465	0.704481
С	2.653984	5.071876	0.026184
С	1.90497	4.037668	2.052818
С	2.772128	6.275748	0.697682
Н	2.897393	5.020473	-1.02961
С	2.027937	5.251851	2.729109
Н	1.563384	3.177055	2.621095
С	2.462709	6.384551	2.048702
Н	3.111392	7.156985	0.161564
0	0.00335	-3.14262	-2.60427
0	2.171928	0.450584	-4.32788
С	0.62972	-1.89721	-2.83224
Н	-0.08109	-1.06153	-2.76878
Н	1.449442	-1.71971	-2.12257
С	1.667008	0.262959	-5.63251
Н	2.174918	-0.61278	-6.03646
Н	0.584875	0.077747	-5.61993
С	14.79608	1.578353	-0.58711
С	15.64695	0.537795	-0.84868
Н	15.25908	2.559559	-0.51151
С	16.52652	-1.60907	-1.25304
С	16.91167	-2.95365	-1.48314
С	18.30839	-3.03364	-1.67955
C	17.56177	-0.7209	-1.27301

С	17.08816	0.638788	-1.03158
С	15.27355	-0.888	-0.99137
С	17.91456	1.736486	-1.00545
0	14.1658	-1.37766	-0.91192
С	17.47662	3.067482	-0.78015
Ν	17.1497	4.161103	-0.5999
С	19.31253	1.600623	-1.21338
Ν	20.45069	1.491407	-1.38217
Н	1.040347	-1.93921	-3.84036
Н	1.876601	1.127109	-6.27429
Н	-0.00186	-3.38507	7.035242
0	-1.93479	-1.47558	6.778906
С	-1.67469	-1.83419	8.118308
Н	-2.34096	-1.23055	8.733744
Н	-1.88356	-2.89596	8.29854
Н	-0.63575	-1.62005	8.397852
Н	2.561577	7.340751	2.548539
0	1.698209	5.22323	4.040379
С	1.801464	6.422117	4.77665
Н	1.139324	7.199382	4.375501
Н	1.496267	6.185224	5.795361
Н	2.831539	6.799286	4.789333
С	18.94032	-4.24994	-1.92485
С	16.13778	-4.11395	-1.53429
Н	20.01267	-4.30489	-2.07473
Н	15.06491	-4.06247	-1.38477
S	19.09544	-1.46901	-1.57748
С	18.16658	-5.38837	-1.97309
С	16.77193	-5.32151	-1.77883
С	-13.6589	-1.0871	-0.08978
С	-14.653	-2.03563	0.179151
С	-14.0484	0.092021	-0.73293
С	-15.9677	-1.82423	-0.18567
Н	-14.3957	-2.94464	0.71489
С	-15.3614	0.309391	-1.10442
Н	-13.3041	0.84608	-0.97546
С	-16.3433	-0.64912	-0.84295
Н	-16.7206	-2.56912	0.052229
Н	-15.6353	1.22693	-1.61736
Ν	-17.6779	-0.40745	-1.21382
С	-18.199	0.90808	-1.05066
С	-18.5926	1.658441	-2.19345
С	-18.3083	1,446739	0.206546

-	С	-19.1426	2.956292	-1.99527
	С	-18.8315	2.739348	0.392394
	Н	-17.9907	0.854044	1.060164
	С	-19.2527	3.472416	-0.68328
	Н	-18.9123	3.142866	1.39654
	Н	-19.6703	4.466566	-0.54811
	С	-18.5399	-1.43914	-1.63674
	С	-18.0558	-2.50569	-2.40033
	С	-19.9032	-1.3853	-1.34189
	С	-18.9146	-3.50125	-2.83466
	Н	-17.0015	-2.54457	-2.65781
	С	-20.7569	-2.38023	-1.79488
	Н	-20.2915	-0.55816	-0.75528
	С	-20.2713	-3.44699	-2.5375
	Н	-18.5198	-4.32127	-3.42701
	Н	-21.8143	-2.32099	-1.555
	Н	-20.9418	-4.22567	-2.88576
	С	-18.4317	1.178382	-3.51405
	С	-19.544	3.708581	-3.12397
	Н	-17.9866	0.200088	-3.66893
	Н	-19.9703	4.69557	-2.96395
	С	-19.3918	3.211377	-4.38913
	С	-18.8211	1.937463	-4.58462
	Н	-19.7015	3.799061	-5.24755
	Н	-18.6874	1.55926	-5.59326
	С	16.00474	-6.52362	-1.83582
	Ν	15.38945	-7.49857	-1.88276
	Н	18.62725	-6.35166	-2.16214

 Table S8: Cartesian coordinates of TNPD2

Atom	X-axis	Y-axis	Z-axis
С	0.579365	0.282831	1.705966
С	-0.79901	0.290462	1.734736
С	-1.4611	-0.74311	1.075562
С	-0.75383	-1.76203	0.411033
С	0.625542	-1.8052	0.440788
С	1.287856	-0.77154	1.098931
Н	-1.35165	1.103038	2.200889
Н	1.178562	-2.59084	-0.06886
С	-2.86096	-0.98131	0.82485
С	-3.04697	-2.04937	-0.01264
С	-4.39652	-2.27421	-0.3702

С	-5.22859	-1.35285	0.243612
S	-4.33483	-0.21412	1.248406
С	5.067734	0.152517	1.46828
С	4.234973	1.126872	1.986216
С	2.875788	0.758059	1.835709
С	2.689393	-0.45478	1.227406
S	4.171928	-1.19911	0.784853
С	6.51061	0.091769	1.405567
С	7.316584	-1.0111	1.540876
S	7.471743	1.497799	1.02459
С	8.684975	-0.73677	1.369944
Н	6.923709	-1.99082	1.790097
С	8.958192	0.582489	1.09412
Н	9.462598	-1.48548	1.474459
С	-6.65995	-1.19325	0.180591
С	-7.37794	-0.0254	0.32764
S	-7.73799	-2.54798	0.001232
С	-8.7634	-0.20772	0.277402
Н	-6.90261	0.940919	0.452056
С	-9.15059	-1.51905	0.092694
Н	-9.47389	0.606675	0.36559
С	1.529817	1.398724	2.144098
С	-1.70607	-2.66662	-0.38097
С	10.24724	1.182365	0.846139
С	10.65761	2.497782	0.902198
S	11.57449	0.134532	0.399707
С	12.02999	2.641907	0.587749
С	12.6802	1.473883	0.294626
Н	12.51952	3.61069	0.565151
С	-10.4909	-2.00974	-0.06072
С	-10.965	-3.32211	-0.06405
S	-11.7705	-0.8483	-0.26704
С	-12.3485	-3.3555	-0.21932
С	-12.9717	-2.1183	-0.34042
Н	-12.9191	-4.27967	-0.23798
С	9.794165	3.667221	1.249675
Н	9.11339	3.931546	0.431935
Н	9.17847	3.474095	2.134067
Н	10.41109	4.545437	1.45615
С	-10.1375	-4.5549	0.09349
Н	-9.46809	-4.71056	-0.75979
Н	-9.51612	-4.51773	0.994592
Н	-10.7818	-5.43375	0.16925

С	4.70702	2.372075	2.663705
Н	5.707031	2.243934	3.085652
Н	4.744073	3.220753	1.97022
Н	4.030301	2.646587	3.478686
С	-4.84213	-3.31843	-1.33983
Н	-4.96582	-4.29526	-0.8571
Н	-5.79128	-3.05492	-1.81248
Н	-4.09836	-3.44142	-2.13274
С	1.37643	2.612144	1.21271
С	1.857064	3.8645	1.578898
С	0.826446	2.444591	-0.06066
С	1.778249	4.929266	0.686082
Н	2.28193	4.02081	2.564999
С	0.736589	3.514638	-0.94289
Н	0.459148	1.471313	-0.36366
С	1.221316	4.767287	-0.56771
Н	2.152113	5.904763	0.982134
Н	1.139902	5.591481	-1.26905
С	1.294842	1.699877	3.617934
С	0.298663	2.594633	4.019965
С	1.995612	0.997865	4.586232
С	0.034018	2.772572	5.366491
Н	-0.26029	3.157815	3.279062
С	1.727945	1.18093	5.943479
Н	2.768991	0.28485	4.312022
С	0.740368	2.07669	6.3412
Н	-0.73858	3.471124	5.673472
С	-1.33169	-2.44141	-1.84795
С	-0.33799	-3.20822	-2.46334
С	-1.85929	-1.35657	-2.53216
С	0.099501	-2.88017	-3.73447
Н	0.09561	-4.05796	-1.94566
С	-1.40606	-1.021	-3.80787
Н	-2.62626	-0.72856	-2.0855
С	-0.42043	-1.78809	-4.42041
Н	0.870299	-3.48111	-4.20743
Н	-0.05457	-1.55112	-5.41226
С	-1.6778	-4.12301	0.077064
С	-2.09813	-5.15887	-0.76239
С	-1.32488	-4.4262	1.383299
С	-2.14825	-6.45769	-0.28807
Н	-2.37665	-4.95192	-1.79017
С	-1.37823	-5.7362	1.860484

Н	-0.99884	-3.65187	2.072038
С	-1.79091	-6.76493	1.019826
Н	-2.4704	-7.2571	-0.94855
0	0.185256	3.428534	-2.17562
0	-1.97806	0.076326	-4.35803
С	-0.40941	2.207337	-2.56371
Н	0.330258	1.399308	-2.65124
Н	-1.19268	1.894922	-1.85927
С	-1.53939	0.478356	-5.63794
Н	-2.10663	1.374035	-5.89087
Н	-0.46819	0.719065	-5.63661
С	-14.3721	-2.03098	-0.5008
С	-15.2513	-0.99163	-0.64206
Н	-14.8108	-3.02618	-0.51039
С	-16.1841	1.161391	-0.84053
С	-16.6022	2.510313	-0.94577
С	-18.0023	2.573869	-1.10395
С	-17.202	0.253962	-0.91379
С	-16.6954	-1.10894	-0.79688
С	-14.9116	0.449791	-0.6685
С	-17.4981	-2.22404	-0.83484
0	-13.8122	0.955319	-0.57153
С	-17.028	-3.55813	-0.72084
Ν	-16.6753	-4.65493	-0.63071
С	-18.9035	-2.10382	-0.99657
Ν	-20.0476	-2.00681	-1.12844
Н	-0.86293	2.382151	-3.53863
Н	-1.73346	-0.29428	-6.39156
Н	0.515413	2.239839	7.388461
0	2.481345	0.443544	6.790449
С	2.252968	0.58441	8.175467
Η	2.951451	-0.08786	8.672721
Н	2.441927	1.611177	8.512362
Η	1.228223	0.300663	8.445296
Н	-1.83605	-7.79141	1.363703
0	-1.00682	-5.90126	3.15039
С	-1.03583	-7.20556	3.687123
Н	-0.35725	-7.87798	3.147816
Η	-0.70504	-7.12035	4.721706
Η	-2.04872	-7.6265	3.667965
С	-18.6581	3.79039	-1.22948
С	-15.8557	3.69074	-0.91392
Н	-19.7334	3.850491	-1.35172

Н	-14.7789	3.655201	-0.79273
S	-18.7581	0.988033	-1.11849
С	-17.9047	4.948	-1.1959
С	-16.5055	4.897915	-1.03837
Cl	-18.7255	6.467777	-1.35289
Cl	-15.5668	6.358183	-0.99792
С	14.07955	1.276314	-0.05904
С	15.03884	2.241771	0.2692
С	14.51871	0.133338	-0.73521
С	16.36807	2.079745	-0.06771
Н	14.74251	3.123309	0.830068
С	15.84636	-0.03454	-1.07852
Н	13.80281	-0.63144	-1.02483
С	16.7936	0.939337	-0.75489
Н	17.09326	2.835789	0.216694
Н	16.15986	-0.92453	-1.61679
Ν	18.14455	0.744887	-1.09442
С	18.7005	-0.55688	-0.93724
С	19.16914	-1.26716	-2.07741
С	18.77157	-1.12142	0.311418
С	19.75244	-2.55105	-1.88305
С	19.32791	-2.40082	0.492102
Н	18.39749	-0.55953	1.162981
С	19.8205	-3.0945	-0.5793
Н	19.37701	-2.8251	1.489723
Н	20.26399	-4.07783	-0.4476
С	18.98946	1.813527	-1.45545
С	18.49964	2.887252	-2.20523
С	20.34229	1.79196	-1.11275
С	19.34197	3.920403	-2.5798
Н	17.45443	2.901971	-2.49949
С	21.18037	2.824775	-1.50647
Н	20.735	0.959956	-0.53602
С	20.68846	3.897851	-2.23567
Н	18.94312	4.745474	-3.16234
Н	22.22994	2.7902	-1.23023
Н	21.34643	4.706081	-2.53737
С	19.05233	-0.76135	-3.39302
С	20.22928	-3.26297	-3.00853
Н	18.58247	0.20546	-3.54651
Н	20.68044	-4.23923	-2.85094
С	20.1184	-2.74094	-4.26794
С	19.51495	-1.48185	-4.46115

Н	20.48613	-3.29774	-5.12405
Н	19.41455	-1.08428	-5.4662

Table S9: Cartesian coordinates of TNPD3

Atom	X-axis	Y-axis	Z-axis
С	1.237842	0.120906	1.669051
С	-0.14127	0.137101	1.662916
С	-0.79433	-0.82623	0.896235
С	-0.07947	-1.78615	0.155774
С	1.299696	-1.82048	0.185273
С	1.952435	-0.85747	0.951448
Н	-0.70258	0.889146	2.21234
Н	1.861207	-2.55863	-0.38261
С	-2.19327	-1.06649	0.640151
С	-2.37224	-2.09343	-0.24894
С	-3.72449	-2.34801	-0.57266
С	-4.56559	-1.49061	0.117126
S	-3.67722	-0.37512	1.15166
С	5.730764	-0.04504	1.535117
С	4.894696	0.848386	2.179169
С	3.536056	0.524584	1.943938
С	3.352465	-0.5776	1.15294
S	4.837308	-1.2644	0.633022
С	7.173496	-0.11966	1.490047
С	7.954356	-1.24697	1.417552
S	8.172743	1.309933	1.416637
С	9.332033	-0.97785	1.330921
Н	7.537066	-2.24717	1.459766
С	9.636424	0.362016	1.333381
Н	10.09406	-1.74889	1.299951
С	-6.00363	-1.39292	0.115598
С	-6.77159	-0.27127	0.348099
S	-7.01906	-2.79129	-0.08581
С	-8.14737	-0.52227	0.343312
Н	-6.33887	0.710626	0.50259
С	-8.47572	-1.84268	0.112399
Н	-8.89378	0.248555	0.500186
С	2.19104	1.119823	2.334285
С	-1.02732	-2.67524	-0.65771
С	10.94159	0.971867	1.229299
С	11.40996	2.181615	1.693782
S	12.20219	0.089481	0.399747

С	12.77656	2.378921	1.380271
С	13.36227	1.352983	0.689554
Н	13.31083	3.283536	1.6545
С	-9.79232	-2.39983	-0.01161
С	-10.1936	-3.73731	-0.01957
S	-11.1378	-1.30786	-0.16778
С	-11.5759	-3.84493	-0.13539
С	-12.2695	-2.6416	-0.22358
Н	-12.0962	-4.79845	-0.14927
С	10.60905	3.191968	2.450121
Н	9.985999	3.800561	1.784155
Н	9.941489	2.721827	3.178649
Н	11.27084	3.874514	2.989724
С	-9.2959	-4.92443	0.0998
Н	-8.6561	-5.04434	-0.78146
Н	-8.64019	-4.85479	0.974079
Н	-9.88918	-5.83616	0.199826
С	5.356273	1.971442	3.049393
Н	6.348985	1.777822	3.463326
Н	5.402884	2.917852	2.497281
Н	4.666306	2.11769	3.885832
С	-4.16929	-3.3619	-1.57459
Н	-4.27038	-4.35792	-1.12694
Н	-5.13072	-3.0961	-2.02075
Н	-3.43759	-3.44305	-2.38361
С	2.085209	2.503539	1.680249
С	2.487302	3.653906	2.348167
С	1.667815	2.600876	0.350311
С	2.458832	4.883313	1.69589
Н	2.814583	3.601773	3.381318
С	1.637352	3.831409	-0.29474
Н	1.362619	1.704523	-0.17744
С	2.035819	4.982682	0.385249
Н	2.769372	5.778387	2.226346
Н	1.999985	5.934648	-0.13463
С	1.918251	1.108674	3.8345
С	0.878892	1.871168	4.377702
С	2.626861	0.256006	4.665677
С	0.58054	1.771766	5.724539
Н	0.313188	2.550431	3.747491
С	2.324647	0.159096	6.025262
Н	3.434064	-0.36153	4.280572
С	1.294583	0.922754	6.563622

Н	-0.22524	2.36886	6.140828
С	-0.68498	-2.43315	-2.12766
С	0.329315	-3.16253	-2.75585
С	-1.28365	-1.3898	-2.81674
С	0.711356	-2.84355	-4.04659
Н	0.815471	-3.98179	-2.2355
С	-0.89119	-1.06609	-4.11654
Н	-2.06612	-0.78942	-2.35963
С	0.111621	-1.79955	-4.74231
Н	1.496973	-3.41634	-4.53006
Н	0.430728	-1.57184	-5.75237
С	-0.97795	-4.14151	-0.22433
С	-1.38416	-5.16761	-1.08244
С	-0.62243	-4.46388	1.076752
С	-1.4181	-6.4754	-0.63147
Н	-1.66393	-4.94604	-2.10681
С	-0.65957	-5.78272	1.530172
Н	-0.30669	-3.69892	1.780591
С	-1.05818	-6.80166	0.670943
Н	-1.72929	-7.26675	-1.3068
0	1.229655	4.005204	-1.57328
0	-1.54236	-0.0215	-4.67734
С	0.8073	2.870248	-2.29893
Н	1.61711	2.138431	-2.41052
Н	-0.05266	2.381408	-1.82278
С	-1.18545	0.354794	-5.98967
Н	-1.81564	1.205041	-6.24848
Н	-0.13251	0.656932	-6.04916
С	-13.6737	-2.63233	-0.35174
С	-14.616	-1.64454	-0.46871
Н	-14.0551	-3.65081	-0.36151
С	-15.6785	0.449448	-0.65024
С	-16.1845	1.768038	-0.75561
С	-17.5819	1.742605	-0.90556
С	-16.6402	-0.51728	-0.71461
С	-16.05	-1.84944	-0.60412
С	-14.3621	-0.18617	-0.49249
С	-16.7873	-3.00849	-0.63232
0	-13.2945	0.383743	-0.4045
С	-16.2384	-4.31297	-0.52594
Ν	-15.8203	-5.3869	-0.44182
С	-18.1995	-2.97024	-0.77393
Ν	-19.3491	-2.93992	-0.88929

Н	0.511796	3.228065	-3.28491
Н	-1.36694	-0.45714	-6.70458
Н	1.042692	0.868808	7.616054
0	3.090663	-0.7033	6.731091
С	2.83039	-0.84497	8.110363
Н	3.54402	-1.57814	8.484843
Н	2.973779	0.101446	8.646288
Н	1.812	-1.20993	8.292317
Н	-1.09039	-7.83463	0.996404
0	-0.28731	-5.96592	2.817499
С	-0.29988	-7.27975	3.330903
Н	0.388257	-7.93356	2.780914
Н	0.028303	-7.20865	4.367393
Н	-1.30709	-7.71365	3.302602
С	-18.3098	2.918314	-1.03513
С	-15.5236	2.998903	-0.73284
Н	-19.3859	2.890931	-1.15324
Н	-14.4471	3.018937	-0.61525
S	-18.239	0.117744	-0.90963
С	-17.648	4.130964	-1.01011
С	-16.2372	4.171009	-0.86258
С	14.74036	1.236784	0.230285
С	15.76434	1.94501	0.869774
С	15.09357	0.427666	-0.85415
С	17.07558	1.855394	0.44563
Н	15.53249	2.551092	1.740869
С	16.40205	0.336958	-1.28811
Н	14.32398	-0.122	-1.38983
С	17.41648	1.052804	-0.64724
Н	17.85203	2.398154	0.97538
Н	16.64757	-0.28673	-2.14282
Ν	18.74601	0.930285	-1.08658
С	19.20188	-0.34859	-1.51843
С	19.58146	-0.54024	-2.8758
С	19.26195	-1.38864	-0.6256
С	20.06502	-1.8197	-3.27001
С	19.72013	-2.65644	-1.02813
Н	18.95615	-1.21523	0.402618
С	20.12573	-2.86381	-2.31823
Н	19.76304	-3.46303	-0.30339
Н	20.49297	-3.8364	-2.63481
С	19.66916	1.99298	-1.00681
С	19.263	3.311054	-1.23572

С	21.0166	1.737982	-0.7476
С	20.18201	4.345311	-1.18072
Н	18.22193	3.518268	-1.46501
С	21.9315	2.779844	-0.71005
Н	21.34444	0.717277	-0.57535
С	21.52291	4.089232	-0.9191
Н	19.84767	5.362501	-1.36149
Н	22.97554	2.561574	-0.50651
Н	22.24086	4.901965	-0.88404
С	19.46933	0.478722	-3.85019
С	20.45152	-2.0195	-4.61597
Н	19.07455	1.446992	-3.55739
Н	20.827	-2.99693	-4.90767
С	20.34787	-1.00998	-5.53318
С	19.84285	0.24802	-5.14679
Н	20.64555	-1.17614	-6.56367
Н	19.74721	1.037092	-5.88605
С	-15.4533	5.45641	-0.77435
С	-18.4923	5.364919	-1.21093
F	-14.1445	5.24199	-0.92375
F	-15.8076	6.337565	-1.71096
F	-15.6124	6.04598	0.413766
F	-18.1877	6.338033	-0.35186
F	-18.3525	5.857188	-2.44439
F	-19.791	5.100726	-1.04838

 Table S10: Cartesian coordinates of TNPD4

Atom	X-axis	Y-axis	Z-axis
С	-0.35046	-0.55719	1.603884
С	1.027157	-0.60497	1.586142
С	1.701218	0.493785	1.05732
С	1.006345	1.615016	0.56736
С	-0.36966	1.689004	0.646437
С	-1.04406	0.589673	1.172836
Н	1.567633	-1.48907	1.916651
Н	-0.91273	2.553829	0.272538
С	3.10006	0.729977	0.799505
С	3.294139	1.901583	0.116238
С	4.640538	2.145181	-0.24005
С	5.462744	1.129585	0.218928
S	4.563218	-0.12116	1.073707

С	-4.83863	-0.2816	1.524574
С	-4.02015	-1.33631	1.886279
С	-2.6554	-0.98459	1.747589
С	-2.44985	0.294271	1.302435
S	-3.92118	1.126567	1.00196
С	-6.27962	-0.17494	1.510253
С	-7.04475	0.942025	1.741439
S	-7.30037	-1.52252	1.074508
С	-8.42667	0.722154	1.599815
Н	-6.61302	1.891124	2.039962
С	-8.75059	-0.56821	1.255583
Н	-9.1775	1.483996	1.77875
С	6.890368	0.961483	0.112968
С	7.59592	-0.22282	0.080182
S	7.981689	2.316729	0.127004
С	8.982839	-0.04895	0.04819
Н	7.110332	-1.19195	0.064777
С	9.383798	1.271664	0.057648
Н	9.684199	-0.87513	0.010998
С	-1.32084	-1.69798	1.914644
С	1.962849	2.601264	-0.11425
С	-10.0646	-1.11709	1.013808
С	-10.5408	-2.4035	1.145992
S	-11.327	-0.03503	0.473761
С	-11.9142	-2.49898	0.815654
С	-12.4979	-1.3211	0.435684
Н	-12.4553	-3.43986	0.847114
С	10.72892	1.766356	-0.01449
С	11.21061	3.065817	0.155925
S	12.00608	0.630186	-0.34154
С	12.59636	3.107321	0.033803
С	13.21565	1.889665	-0.22905
Н	13.17245	4.021706	0.143937
С	-9.74247	-3.5865	1.590472
Н	-9.13374	-3.99786	0.776639
Н	-9.06169	-3.33569	2.409625
Н	-10.4058	-4.3841	1.935106
С	10.38762	4.275908	0.451878
Н	9.711845	4.523948	-0.37397
Н	9.773229	4.14248	1.348834
Н	11.03484	5.140065	0.617623
С	-4.5071	-2.65086	2.403176
Η	-5.47529	-2.5527	2.900885

Н	-4.61994	-3.38663	1.59776
Н	-3.7987	-3.06537	3.126173
С	5.093165	3.304666	-1.06468
Н	5.265066	4.197933	-0.45231
Н	6.018938	3.082869	-1.60105
Н	4.331749	3.562091	-1.80682
С	-1.2378	-2.76889	0.814452
С	-1.75118	-4.04519	1.016311
С	-0.72121	-2.43774	-0.44088
С	-1.73998	-4.97258	-0.02117
Н	-2.15094	-4.32736	1.984793
С	-0.69948	-3.37232	-1.46943
Н	-0.32678	-1.44323	-0.61365
С	-1.21804	-4.64968	-1.25883
Н	-2.13961	-5.9682	0.146321
Н	-1.18989	-5.36651	-2.07319
С	-1.04417	-2.21494	3.31942
С	-0.06248	-3.18397	3.547706
С	-1.68709	-1.64294	4.406032
С	0.245124	-3.56237	4.842647
Н	0.450965	-3.64806	2.711245
С	-1.3764	-2.02834	5.71079
Н	-2.44728	-0.87811	4.268607
С	-0.40354	-2.9975	5.935098
Н	1.005998	-4.3178	5.014317
С	1.538473	2.607793	-1.58462
С	0.562264	3.493295	-2.05006
С	1.997993	1.611914	-2.43368
С	0.075068	3.368555	-3.33935
Н	0.180528	4.276102	-1.4024
С	1.493107	1.479724	-3.72697
Н	2.748334	0.896148	-2.10673
С	0.525895	2.365842	-4.19043
Н	-0.68129	4.061358	-3.69555
Н	0.121844	2.287634	-5.19264
С	1.995404	3.972448	0.557557
С	2.427551	5.110362	-0.13003
С	1.689547	4.085404	1.905361
С	2.535513	6.320498	0.531998
Н	2.670728	5.052702	-1.18556
С	1.80207	5.305864	2.571973
Н	1.356334	3.22618	2.48069
С	2.226128	6.437076	1.882324

Н	2.866544	7.200488	-0.01127
0	-0.18603	-3.12831	-2.6974
0	1.99728	0.44869	-4.4459
С	0.441834	-1.88459	-2.93072
Н	-0.26807	-1.04782	-2.87123
Н	1.261589	-1.70464	-2.22171
С	1.498097	0.247057	-5.75065
Н	2.013948	-0.62792	-6.14605
Н	0.417363	0.053732	-5.74016
С	14.61839	1.810661	-0.35949
С	15.49711	0.789198	-0.60502
Η	15.06295	2.794662	-0.22865
С	16.42619	-1.32613	-1.06179
С	16.8425	-2.65342	-1.33385
С	18.25024	-2.70914	-1.45148
С	17.44881	-0.428	-0.97799
С	16.94508	0.912795	-0.694
С	15.15069	-0.63186	-0.83519
С	17.75576	2.013074	-0.55153
0	14.04729	-1.1367	-0.84192
С	17.29044	3.323088	-0.26604
Ν	16.94156	4.399878	-0.03336
С	19.1649	1.90139	-0.68495
Ν	20.312	1.811221	-0.79388
Н	0.852778	-1.93153	-3.93853
Н	1.703211	1.107786	-6.39845
Η	-0.14631	-3.31682	6.938019
0	-2.07526	-1.4028	6.684972
С	-1.80331	-1.75136	8.024671
Н	-2.46165	-1.14054	8.641576
Н	-2.01383	-2.81092	8.215628
Η	-0.76104	-1.53833	8.292393
Н	2.31675	7.397997	2.374619
0	1.473655	5.284676	3.883723
С	1.566541	6.490285	4.610326
Η	0.897079	7.258287	4.20352
Η	1.264231	6.258776	5.631132
Η	2.593162	6.876884	4.619202
С	18.9135	-3.90465	-1.71921
С	16.08851	-3.8178	-1.48698
Н	19.99333	-3.93896	-1.8083
Η	15.00881	-3.80591	-1.40183
S	19.00822	-1.14511	-1.22576

С	18.1614	-5.04921	-1.86929
С	16.76944	-4.98391	-1.7506
С	-13.882	-1.07638	0.051098
С	-14.9036	-1.92001	0.502201
С	-14.2438	-0.00692	-0.77403
С	-16.221	-1.71094	0.144373
Н	-14.6641	-2.73636	1.177521
С	-15.5586	0.205503	-1.14145
Н	-13.4769	0.658376	-1.16189
С	-16.5709	-0.64558	-0.69062
Н	-16.9947	-2.36799	0.528669
Н	-15.8112	1.034334	-1.79647
Ν	-17.9065	-0.40051	-1.0539
С	-18.3532	0.950551	-1.12236
С	-18.7697	1.49266	-2.36981
С	-18.3709	1.722016	0.012098
С	-19.2455	2.833871	-2.40084
С	-18.821	3.054251	-0.03103
Η	-18.0381	1.284152	0.949289
С	-19.2617	3.593982	-1.20845
Н	-18.8299	3.644003	0.879882
Н	-19.6232	4.61807	-1.24852
С	-18.8452	-1.4387	-1.22598
С	-18.467	-2.65581	-1.80068
С	-20.181	-1.24692	-0.87065
С	-19.4017	-3.65982	-1.98971
Н	-17.4356	-2.80656	-2.10532
С	-21.1122	-2.25376	-1.07854
Н	-20.4871	-0.30293	-0.43002
С	-20.731	-3.46766	-1.63197
Н	-19.0892	-4.59829	-2.43777
Н	-22.1469	-2.08585	-0.79518
Н	-21.4613	-4.25465	-1.78843
С	-18.7022	0.762764	-3.57939
С	-19.6697	3.380529	-3.63462
Η	-18.3132	-0.25083	-3.56245
Н	-20.0391	4.40269	-3.64878
С	-19.6091	2.644755	-4.78612
С	-19.1113	1.326377	-4.75792
Η	-19.9354	3.075995	-5.72722
Η	-19.0496	0.757008	-5.68002
Ν	15.99397	-6.22604	-1.91548
0	16.60794	-7.24649	-2.14944

Ο	14.78751	-6.15714	-1.80772
Н	18.62821	-6.00336	-2.07826

Table S11: Cartesian coordinates of TNPD5

Atom	X-axis	Y-axis	Z-axis
С	-0.41998	-0.38734	1.714931
С	0.958285	-0.40228	1.73556
С	1.621448	0.655459	1.116895
С	0.915416	1.704357	0.499361
С	-0.46352	1.752614	0.538961
С	-1.12682	0.695159	1.157117
Н	1.509762	-1.23561	2.164869
Н	-1.01557	2.56195	0.066774
С	3.020855	0.898745	0.870466
С	3.207826	2.002276	0.080029
С	4.556037	2.236849	-0.27351
С	5.387131	1.284425	0.294074
S	4.492264	0.105802	1.251303
С	-4.90889	-0.22294	1.513806
С	-4.07857	-1.2218	1.987247
С	-2.71813	-0.85468	1.842953
С	-2.52895	0.380882	1.28285
S	-4.00987	1.150213	0.87967
С	-6.35171	-0.1518	1.460821
С	-7.15017	0.949962	1.642068
S	-7.32305	-1.53583	1.028658
С	-8.52089	0.691122	1.465285
Н	-6.75015	1.916696	1.927917
С	-8.80314	-0.61457	1.139078
Н	-9.29361	1.439822	1.601437
С	6.815667	1.11842	0.213147
С	7.526628	-0.0591	0.325843
S	7.901574	2.467904	0.047156
С	8.911099	0.113032	0.259477
Н	7.04563	-1.02428	0.43578
С	9.307168	1.425716	0.096717
Н	9.615575	-0.70906	0.319997
С	-1.37347	-1.51572	2.111789
С	1.86761	2.637509	-0.25894
С	-10.0963	-1.19569	0.867974
С	-10.5197	-2.5078	0.88873
S	-11.4092	-0.12409	0.436255

С	-11.8907	-2.63064	0.559345
С	-12.5269	-1.44936	0.289084
Н	-12.3894	-3.59367	0.509013
С	10.64826	1.905672	-0.06434
С	11.13386	3.216437	-0.0585
S	11.91547	0.736233	-0.296
С	12.51366	3.240266	-0.22632
С	13.12721	1.997791	-0.36781
Н	13.09186	4.159759	-0.24026
С	-9.67005	-3.69333	1.215034
Н	-8.99746	-3.955	0.389678
Н	-9.04705	-3.52067	2.098421
Н	-10.2974	-4.56628	1.41246
С	10.31711	4.453277	0.120228
Н	9.634626	4.618084	-0.7208
Н	9.71097	4.41453	1.031563
Н	10.96835	5.327346	0.190365
С	-4.55428	-2.49025	2.617473
Н	-5.55152	-2.37331	3.049082
Н	-4.59923	-3.31079	1.891388
Н	-3.8753	-2.80038	3.417735
С	5.001232	3.322526	-1.19648
Н	5.157795	4.268973	-0.66512
Н	5.933384	3.065959	-1.70564
Н	4.242244	3.503513	-1.96301
С	-1.23537	-2.68823	1.126869
С	-1.72688	-3.94999	1.44263
С	-0.68777	-2.4726	-0.14035
С	-1.66175	-4.97732	0.506281
Н	-2.14902	-4.14318	2.423345
С	-0.61135	-3.50623	-1.06643
Н	-0.31174	-1.49076	-0.403
С	-1.10747	-4.76848	-0.74182
Н	-2.0439	-5.96072	0.762977
Н	-1.03632	-5.56346	-1.47718
С	-1.12599	-1.88623	3.567502
С	-0.12616	-2.79961	3.915205
С	-1.81761	-1.23335	4.575703
С	0.151632	-3.04393	5.24842
Н	0.42472	-3.32591	3.141833
С	-1.53717	-1.48396	5.919708
Н	-2.5935	-0.50797	4.344398
С	-0.54571	-2.39773	6.263033

Н	0.927055	-3.75656	5.512985
С	1.489995	2.468628	-1.733
С	0.496407	3.258332	-2.31876
С	2.015456	1.409125	-2.45752
С	0.05895	2.978756	-3.60153
Н	0.062754	4.08789	-1.76941
С	1.561518	1.121531	-3.74456
Н	2.781107	0.762881	-2.03539
С	0.577584	1.912705	-4.32833
Н	-0.71119	3.597967	-4.05143
Н	0.211635	1.713905	-5.32852
С	1.843163	4.074428	0.257136
С	2.250393	5.145436	-0.54351
С	1.506969	4.321827	1.579527
С	2.303543	6.42355	-0.01585
Н	2.515582	4.982679	-1.58263
С	1.563445	5.610722	2.110515
Н	1.191853	3.518412	2.239472
С	1.962573	6.674871	1.308159
Н	2.615146	7.250797	-0.64642
0	-0.06295	-3.3753	-2.29655
0	2.131004	0.043765	-4.33442
С	0.55057	-2.14846	-2.63397
Н	-0.17573	-1.3254	-2.68576
Н	1.340096	-1.87936	-1.9188
С	1.694277	-0.30797	-5.62976
Н	2.259104	-1.19547	-5.91491
Н	0.622302	-0.54487	-5.64031
С	14.52131	1.90159	-0.54269
С	15.39224	0.854066	-0.7079
Н	14.96991	2.892469	-0.5434
С	16.30224	-1.30287	-0.95432
С	16.70719	-2.65188	-1.08811
С	18.10757	-2.72482	-1.26003
С	17.32797	-0.40632	-1.02076
С	16.83236	0.962528	-0.87443
С	15.03668	-0.58082	-0.75537
С	17.64953	2.066962	-0.90169
0	13.93585	-1.08127	-0.65553
С	17.19625	3.404326	-0.7601
Ν	16.85515	4.502548	-0.64746
С	19.05122	1.929975	-1.08012
Ν	20.19201	1.815094	-1.22579

Н	0.999515	-2.28899	-3.61655
Н	1.893026	0.492025	-6.35298
Н	-0.31102	-2.61276	7.298711
0	-2.2828	-0.79046	6.809483
С	-2.043	-1.00204	8.183556
Н	-2.73683	-0.35591	8.720346
Н	-2.2299	-2.04467	8.468958
Н	-1.01582	-0.73286	8.459041
Н	2.009733	7.686175	1.694136
0	1.208923	5.720855	3.410923
С	1.242057	7.0018	4.001062
Н	0.554944	7.694158	3.499065
Н	0.925013	6.872673	5.035391
Н	2.25371	7.425886	3.986359
С	18.75581	-3.94262	-1.41443
С	15.94666	-3.82344	-1.0719
Н	19.82992	-4.00339	-1.54671
Н	14.87155	-3.77438	-0.941
S	18.87475	-1.14947	-1.25239
С	17.99334	-5.09975	-1.39667
С	16.58473	-5.0393	-1.22527
С	-13.9206	-1.22916	-0.07334
С	-14.8933	-2.19133	0.223802
С	-14.3408	-0.06723	-0.7288
С	-16.217	-2.00829	-0.1239
Н	-14.6121	-3.08787	0.768457
С	-15.6628	0.121837	-1.08281
Н	-13.6141	0.696258	-0.99397
С	-16.6234	-0.84918	-0.7912
Н	-16.9529	-2.76277	0.136023
Н	-15.961	1.026605	-1.60486
Ν	-17.9681	-0.63448	-1.14229
С	-18.5108	0.671808	-0.97562
С	-18.9467	1.405951	-2.11363
С	-18.6005	1.21744	0.280174
С	-19.5177	2.693997	-1.91089
С	-19.1446	2.500825	0.46986
Н	-18.251	0.637407	1.130018
С	-19.6062	3.217543	-0.6002
Н	-19.2091	2.90995	1.472917
Н	-20.0401	4.204236	-0.46178
С	-18.8193	-1.68599	-1.53738
С	-18.3303	-2.75148	-2.29937

С	-20.1773	-1.6539	-1.2166
С	-19.1789	-3.76678	-2.7072
Н	-17.2807	-2.77383	-2.57693
С	-21.0213	-2.66858	-1.64335
Н	-20.5694	-0.82798	-0.63078
С	-20.5305	-3.73389	-2.38467
Н	-18.7806	-4.5856	-3.29884
Н	-22.0748	-2.62601	-1.38371
Н	-21.1932	-4.528	-2.71235
С	-18.8085	0.919525	-3.43447
С	-19.9618	3.429723	-3.03449
Н	-18.3478	-0.05079	-3.59362
Н	-20.4039	4.409099	-2.87075
С	-19.8308	2.92632	-4.29955
С	-19.2393	1.66274	-4.50032
Н	-20.1733	3.501295	-5.15411
Н	-19.1227	1.279876	-5.50932
С	15.81992	-6.24295	-1.21195
Ν	15.20091	-7.21595	-1.20134
С	18.63801	-6.36084	-1.55386
Ν	19.16204	-7.38053	-1.68134

 Table S12: Cartesian coordinates of TNPD6

Atom	X-axis	Y-axis	Z-axis
С	0.591239	-1.62557	0.606787
С	1.964408	-1.6977	0.499497
С	2.684793	-0.512	0.630255
С	2.041312	0.716573	0.86947
С	0.670257	0.783045	1.011207
С	-0.05027	-0.40181	0.878048
Н	2.468057	-2.63792	0.287357
Н	0.164658	1.727939	1.196114
С	4.094283	-0.22476	0.52229
С	4.343799	1.117199	0.636596
С	5.704772	1.467538	0.477644
С	6.479893	0.341894	0.257156
S	5.520985	-1.13585	0.244659
С	-3.87598	-1.20642	0.919925
С	-3.10584	-2.32251	0.650532
С	-1.72854	-1.99251	0.642272
С	-1.46664	-0.67393	0.900505

S	-2.899	0.240824	1.144603
С	-5.30947	-1.05823	1.032389
С	-6.00593	-0.22309	1.870623
S	-6.41063	-1.90642	-0.02353
С	-7.4003	-0.27694	1.694092
Н	-5.51578	0.389723	2.619292
С	-7.80204	-1.1529	0.714455
Н	-8.10382	0.290087	2.293851
С	7.90118	0.211234	0.049817
С	8.557473	-0.7496	-0.68819
S	9.047685	1.252141	0.844877
С	9.952076	-0.64349	-0.63523
Н	8.032171	-1.50275	-1.26456
С	10.40538	0.398375	0.146365
Н	10.62088	-1.31342	-1.16415
С	-0.43114	-2.74503	0.386029
С	3.046545	1.874552	0.877512
С	-9.14917	-1.42337	0.269438
С	-9.69726	-2.54494	-0.31442
S	-10.3553	-0.17561	0.480634
С	-11.0792	-2.38613	-0.57848
С	-11.5996	-1.17464	-0.2122
Н	-11.6732	-3.16273	-1.05073
С	11.77	0.799706	0.349317
С	12.30856	1.676172	1.290255
S	12.98951	0.118513	-0.68865
С	13.69363	1.761671	1.161414
С	14.25308	0.988096	0.151812
Н	14.31038	2.380384	1.807224
С	-8.96083	-3.80397	-0.64137
Н	-8.37754	-3.70823	-1.56479
Н	-8.26463	-4.08852	0.153565
Н	-9.66388	-4.62859	-0.785
С	11.5445	2.42689	2.330677
Н	10.89869	3.194819	1.890517
Н	10.90691	1.765323	2.926632
Н	12.2329	2.930345	3.013346
С	-3.64391	-3.70131	0.448124
Н	-4.62767	-3.82133	0.908308
Н	-3.73962	-3.94464	-0.61695
Н	-2.9728	-4.44405	0.890368
С	6.215243	2.870841	0.47846
Н	6.412644	3.230789	1.495355

Н	7.140215	2.965486	-0.0956
Н	5.476248	3.544227	0.03429
С	-0.4405	-3.20273	-1.07847
С	-0.94383	-4.44552	-1.4448
С	-0.02829	-2.31595	-2.0764
С	-1.02094	-4.79634	-2.78961
Н	-1.26941	-5.14979	-0.6862
С	-0.10332	-2.67318	-3.41743
Н	0.35551	-1.34168	-1.79633
С	-0.60386	-3.92495	-3.77632
Н	-1.41027	-5.77112	-3.06747
Н	-0.64947	-4.18667	-4.82858
С	-0.14791	-3.85429	1.393118
С	0.818009	-4.83134	1.13091
С	-0.76791	-3.84254	2.632431
С	1.131708	-5.76911	2.098187
Н	1.313602	-4.86387	0.165582
С	-0.45026	-4.79087	3.606142
Н	-1.51494	-3.09283	2.879714
С	0.505796	-5.76553	3.340195
Н	1.879666	-6.52748	1.887272
С	2.653035	2.780991	-0.28913
С	1.700583	3.791374	-0.12516
С	3.129968	2.512233	-1.56289
С	1.257939	4.507727	-1.22298
Н	1.307766	4.017263	0.861204
С	2.672868	3.228608	-2.66968
Н	3.860129	1.725753	-1.73568
С	1.732502	4.239963	-2.50237
Н	0.521091	5.293815	-1.08814
Н	1.365645	4.814893	-3.34429
С	3.131683	2.574822	2.23422
С	3.609306	3.883553	2.349688
С	2.82912	1.87264	3.391144
С	3.763473	4.457165	3.599501
Η	3.851052	4.458387	1.462202
С	2.987792	2.451693	4.650368
Н	2.462033	0.850972	3.350226
С	3.456256	3.757027	4.760453
Н	4.129511	5.476368	3.679349
0	0.291905	-1.87489	-4.43615
0	3.199052	2.857887	-3.85968
С	0.833521	-0.60978	-4.12136

Н	0.103932	0.0254	-3.60353
Н	1.734265	-0.69924	-3.50024
С	2.759464	3.533464	-5.0179
Н	3.291488	3.085331	-5.8565
Н	1.679932	3.409533	-5.16984
С	15.65035	0.992136	-0.06628
С	16.47847	0.361147	-0.95181
Н	16.1366	1.655435	0.645442
С	17.3097	-0.97489	-2.71003
С	17.66702	-1.80818	-3.78269
С	19.01936	-1.78706	-3.97351
С	18.37066	-0.34124	-2.10785
С	17.93059	0.500958	-1.01006
С	16.06891	-0.57612	-2.02565
С	18.78148	1.247283	-0.22807
0	14.9443	-0.94206	-2.2941
С	18.37351	2.071939	0.851377
Ν	18.07157	2.751726	1.736174
С	20.17973	1.229454	-0.46993
Ν	21.31778	1.210733	-0.67205
Η	1.100847	-0.14454	-5.06981
Н	2.995536	4.603793	-4.97413
Н	0.767555	-6.51552	4.077061
0	-1.12713	-4.67713	4.771347
С	-0.84729	-5.60745	5.794232
Н	-1.48789	-5.34301	6.634926
Н	-1.07474	-6.63317	5.478594
Η	0.201494	-5.55358	6.111352
Н	3.58295	4.232127	5.725976
0	2.656839	1.664037	5.698937
С	2.794253	2.196844	6.997763
Н	2.154706	3.076422	7.141995
Н	2.482127	1.412864	7.686994
Н	3.834674	2.470177	7.213017
S	19.86053	-0.76264	-2.85946
С	-12.9724	-0.70122	-0.33376
С	-14.0342	-1.61077	-0.39951
С	-13.2834	0.660819	-0.39217
С	-15.3417	-1.18374	-0.52387
Η	-13.833	-2.67488	-0.31583
С	-14.5883	1.095998	-0.52188
Η	-12.4853	1.39804	-0.36459
С	-15.6408	0.180082	-0.59427

Н	-16.1465	-1.91157	-0.55016
Н	-14.8018	2.159401	-0.58057
Ν	-16.9646	0.640187	-0.70404
С	-17.3385	1.807111	0.022874
С	-17.7222	2.982764	-0.67994
С	-17.3168	1.792309	1.39464
С	-18.1232	4.121957	0.073674
С	-17.6937	2.929413	2.132322
Н	-17.01	0.882948	1.904348
С	-18.101	4.064619	1.486409
Н	-17.6727	2.892872	3.216698
Н	-18.4057	4.943716	2.047936
С	-17.9566	-0.07325	-1.40725
С	-17.643	-0.76429	-2.5816
С	-19.281	-0.05841	-0.96707
С	-18.6295	-1.44094	-3.27911
Н	-16.6209	-0.76091	-2.9482
С	-20.2639	-0.72697	-1.68187
Н	-19.5374	0.480555	-0.06005
С	-19.9471	-1.4275	-2.83687
Н	-18.3665	-1.97183	-4.18915
Н	-21.2885	-0.70413	-1.32311
Н	-20.7179	-1.95338	-3.39045
С	-17.6922	3.07212	-2.09112
С	-18.5125	5.294719	-0.61471
Н	-17.3607	2.213134	-2.66676
Н	-18.8247	6.157747	-0.0323
С	-18.489	5.346783	-1.98137
С	-18.0655	4.226654	-2.72493
Н	-18.7878	6.253236	-2.49832
Н	-18.033	4.28394	-3.80841
Н	16.97512	-2.38877	-4.37915
Н	19.59672	-2.32083	-4.7164

Table S13: Natural bond orbit	tals (NBOs) analysis of TNPR
-------------------------------	------------------------------

Donor(<i>i</i>)	Туре	Acceptor(j)	Туре	E(2) [kcal/mol]	E(j)-E(i) $[a.u]$	F(i,j) [a.u]
C38-C39	π	C112-C113	π^*	31.17	0.31	0.088
C44-C45	π	C109-C110	π^*	31.13	0.31	0.088
C109C110	π	C135-C139	π^*	26.97	0.3	0.081
C78-C80	π	C74-C76	π^*	25.23	0.31	0.079
C41-C42	π	C44-C45	π^*	24.78	0.29	0.078
C66-C70	π	C65-C68	π^*	24.04	0.29	0.077

C73-C75	π	C78-C80	π*	23.91	0.3	0.077
C112-C113	π	C137-O142	π^*	23.72	0.31	0.078
C117-C118	π	C119-C120	π*	22.29	0.3	0.073
C127-C128	π	C125-C126	π^*	21.92	0.3	0.073
C119-C120	π	C117-C118	π*	20.85	0.3	0.072
C26-C27	π	C29-C31	π*	19.61	0.3	0.072
C119-C120	π	C135-C139	π*	18.59	0.29	0.066
C74-C76	π	C78-C80	π*	17.57	0.29	0.065
C136-O141	π	C115-C116	π*	4.09	0.44	0.041
C82-C84	π	C4-C5	π*	1.16	0.31	0.017
C16-C17	π	C63-C64	π^*	0.79	0.33	0.015
C109-H111	σ	S43-C45	σ*	10.29	0.73	0.077
C140-C149	σ	C149-N150	σ*	8.17	1.61	0.103
C143-N144	σ	C139-C143	σ*	7.99	1.57	0.101
C109-H111	σ	C110-C136	σ*	6.82	0.99	0.074
C11-C12	σ	C12-C26	σ*	6.27	1.25	0.079
C29-C31	σ	C31-C41	σ*	5.98	1.27	0.078
C44-H46	σ	S43-C45	σ*	5.18	0.74	0.055
C76-C80	σ	C78-O154	σ*	4.98	1.09	0.066
С70-Н72	σ	C64-C66	σ*	3.98	1.11	0.059
C115-C120	σ	C136-O141	σ*	2.94	1.29	0.055
C92-C94	σ	C94-H98	σ*	1.99	1.12	0.042
С29-Н32	σ	C29-C31	σ*	1.69	1.11	0.039
C125C126	σ	C125-H131	σ*	1.66	1.15	0.039
C95-C99	σ	C99-H159	σ*	1.57	1.13	0.038
C103-H105	σ	C68-O101	σ*	0.52	0.91	0.020
С59-Н60	σ	C10-C11	σ*	0.50	1.07	0.021
O154	LP(2)	C78-C80	π^*	33.27	0.36	0.104
O102	LP(2)	C87-C89	π^*	33.13	0.36	0.104
S37	LP(2)	C35-C36	π^*	26.52	0.27	0.076
S18	LP(2)	C14-C15	π^*	21.11	0.29	0.07
O141	LP(2)	C115-C136	σ*	20.82	0.76	0.114
N148	LP(1)	C140-C147	σ^*	12.64	1.04	0.103
S28	LP(1)	С51-Н54	σ*	0.51	1.06	0.021

Table S14: Natural bond	l orbitals analysi	is for TNPD1 with i	its representative values
-------------------------	--------------------	---------------------	---------------------------

Donor(i)	Туре	Acceptor(j)	Туре	E(2) [kcal/mol]	<i>E(j)-E(i)</i> [<i>a.u</i>]	F(i,j) [a.u]
C44-C45	π	C109-C110	π^*	30.87	0.31	0.088
C5-C6	π	C3-C4	π^*	25.63	0.3	0.079
C63-C64	π	C66-C70	π^*	24.63	0.3	0.077
C150-C152	π	C145-C147	π^*	23.95	0.3	0.077

C1-C2	π	C3-C4	π^*	22.05	0.3	0.075
C112-C115	π	C116-C118	π^*	21.56	0.32	0.075
C5-C6	π	C1-C2	π^*	20.68	0.3	0.072
C9-C10	π	C3-C4	π^*	14.09	0.32	0.063
C38-C39	π	C145-C147	π^*	12.03	0.32	0.058
C14-C15	π	C19-C20	π^*	10.74	0.31	0.053
C116-C118	π	C109-C110	π^*	7.79	0.34	0.046
C117-O119	π	C112-C115	π^*	4.86	0.42	0.044
C117-O119	π	C109-C110	π^*	3.62	0.43	0.038
C63-C64	π	C16-C17	π^*	1.32	0.29	0.018
C73-C75	π	C1-C2	π^*	0.84	0.3	0.014
C122-N123	π	C120-N121	π^*	0.64	0.47	0.015
C120-N121	π	C122-N123	π^*	0.63	0.47	0.015
C109-H111	σ	S43-C45	σ*	10.01	0.73	0.076
C144-C184	σ	C184-N185	σ*	8.88	1.61	0.107
C3-C4	σ	C9-S13	σ*	7.39	0.91	0.073
C14-C15	σ	C16-C33	σ*	6.69	1.14	0.078
C14-C19	σ	C14-C15	σ*	6.55	1.31	0.083
C29-C31	σ	C31-C41	σ*	5.98	1.27	0.078
С27-Н30	σ	C26-S28	σ*	5.68	0.74	0.058
C65-C68	σ	C68-C70	σ*	5.29	1.29	0.074
С139-Н141	σ	C113-C114	σ*	4.99	1.06	0.065
С55-Н56	σ	C15-C16	σ*	4.46	1.07	0.062
С74-Н77	σ	C76-C80	σ*	3.99	1.11	0.059
C44-H46	σ	C41-C42	σ*	3.38	1.1	0.055
С51-Н53	σ	C42-C44	σ*	2.44	1.08	0.046
C12-C26	σ	C10-C11	σ*	2.05	1.3	0.046
C115-S142	σ	C110-C116	σ*	1.44	1.2	0.037
С97-О133	σ	C95-C99	σ*	1.03	1.52	0.035
С150-Н154	σ	C152-N155	σ*	0.93	0.95	0.027
C12-S13	σ	C10-C34	σ*	0.57	1.07	0.022
C4-C34	σ	C82-C84	σ*	0.52	1.21	0.022
C120-N121	σ	C116-C118	σ*	0.5	1.65	0.026
O127	LP(2)	C78-C80	π^*	33.18	0.36	0.104
S43	LP(2)	C41-C42	π^*	26.06	0.27	0.076
N155	LP(1)	C156-C158	π^*	5.27	0.3	0.036
O119	LP(2)	C112-C117	σ*	21.58	0.75	0.116
O102	LP(1)	C87-C89	σ*	7.36	1.14	0.082
S43	LP(1)	C45-C109	σ*	0.55	1.21	0.023

Table S15: Natural bond orbitals analysis for TNPD2 with its representative values

	Donor(<i>i</i>)	Туре	Acceptor(j)	Туре	<i>E</i> (2)	E(j)- $E(i)$	F(i,j)
--	-------------------	------	-------------	------	--------------	--------------	--------

				[kcal/mol]	[<i>a.u</i>]	[<i>a</i> . <i>u</i>]
C44-C45	π	C109-C110	π^*	30.53	0.31	0.087
C113-C139	π	C143-C144	π^*	26.26	0.25	0.074
C78-C80	π	C74-C76	π^*	25.35	0.31	0.079
C63-C64	π	C66-C70	π^*	24.64	0.3	0.077
C152-C154	π	C147-C149	π^*	23.93	0.3	0.076
C147-C149	π	C148-C150	π^*	21.97	0.3	0.073
C112-C115	π	C117-O119	π^*	20.84	0.33	0.075
C3-C4	π	C1-C2	π^*	19.89	0.3	0.07
C179-C182	π	C178-C183	π^*	18.75	0.31	0.069
C63-C64	π	C65-C68	π^*	17.98	0.29	0.066
C11-C12	π	C26-C27	π^*	13.22	0.3	0.059
C14-C15	π	C19-C20	π^*	10.41	0.31	0.053
C117-O119	π	C112-C115	π^*	4.84	0.42	0.044
C117-O119	π	C109-C110	π^*	3.63	0.43	0.038
C1-C2	π	C73-C75	π^*	0.88	0.31	0.015
C167-C169	π	C158-C160	π^*	0.66	0.3	0.013
C120-N121	π	C122-N123	π^*	0.63	0.47	0.015
C109-H111	σ	S43-C45	σ^*	9.97	0.73	0.076
C118-C120	σ	C120-N121	σ^*	8.34	1.62	0.104
C109-H111	σ	C110-C117	σ^*	7.19	0.97	0.075
C36-C38	σ	C24-C35	σ^*	6.07	1.21	0.077
C41-S43	σ	S28-C31	σ^*	5.87	0.87	0.064
C47-H50	σ	C35-C36	σ^*	5.41	1.1	0.069
C95-C99	σ	C97-O133	σ*	4.98	1.09	0.066
C59-H61	σ	C10-C11	σ*	4.44	1.07	0.062
С70-Н72	σ	C64-C66	σ*	3.98	1.11	0.059
C115-S142	σ	C114-C138	σ^*	3.66	1.28	0.061
C112-C115	σ	C117-O119	σ*	2.95	1.33	0.056
C182-C183	σ	C178-H180	σ^*	2.84	1.12	0.05
C14-C15	σ	C19-C20	σ^*	2.15	1.31	0.048
S43-C45	σ	C109-H111	σ^*	1.95	1.07	0.041
N157-C167	σ	C168-C170	σ*	1.38	1.38	0.039
C34-C82	σ	C3-C4	σ*	1.07	1.19	0.032
C1-C2	σ	C16-C33	σ*	0.81	1.14	0.027
C1-C33	σ	C73-C75	σ^*	0.58	1.21	0.024
C10-C34	σ	C92-C94	σ^*	0.52	1.22	0.023
C120-N121	σ	C116-C118	σ^*	0.5	1.65	0.026
O127	LP(2)	C78-C80	π^*	33.17	0.36	0.078
S28	LP(2)	C29-C31	π^*	23.35	0.28	0.104
N157	LP(1)	C158-C160	π^*	5.52	0.3	0.082
O119	LP(2)	C112-C117	σ^*	21.51	0.76	0.115
O101	LP(2)	C103-H105	σ^*	5.76	0.69	0.058
Cl145	LP(2)	C114-C138	σ^*	0.53	0.9	0.02

Donor(i)	Type	Accentor(i)	Type	<i>E</i> (2)	E(j)- $E(i)$	F(i,j)
	турс	Acceptor ()	турс	[kcal/mol]	[<i>a</i> . <i>u</i>]	[<i>a</i> . <i>u</i>]
C44-C45	π	C109-C110	π^*	31.36	0.31	0.088
C109-C110	π	C116-C118	π^*	26.83	0.29	0.080
C5-C6	π	C3-C 4	π^*	25.61	0.30	0.078
C87-C89	π	C83-C85	π^*	25.21	0.31	0.079
C41-C42	π	C44-C45	π^*	24.70	0.29	0.078
C66-C70	π	C65-C68	π^*	23.98	0.3	0.077
C166-C168	π	C165-C167	π^*	22.92	0.29	0.075
C146-C148	π	C150-C152	π^*	21.99	0.30	0.074
C170-C172	π	C165-C167	π^*	20.63	0.29	0.070
C3-C4	π	C1-C2	π^*	19.83	0.30	0.070
C113-C114	π	C139-C144	π^*	18.75	0.31	0.070
C156-C158	π	C160-C162	π^*	17.97	0.32	0.068
C109-C110	π	C44-C45	π^*	11.13	0.30	0.054
C116-C118	π	C112-C115	π^*	9.36	0.32	0.050
C117-O119	π	C112-C115	π^*	4.83	0.42	0.044
C122-N123	π	C120-N121	π^*	0.64	0.47	0.015
C65-C68	π	C65-C68	π^*	0.62	0.30	0.012
C109-H111	σ	S43-C45	σ*	10.06	0.73	0.077
C118-C120	σ	C120-N121	σ*	8.35	1.62	0.104
C109-H111	σ	C110-C117	σ*	7.18	0.97	0.075
C24-C35	σ	C35-C36	σ*	6.88	1.32	0.085
C31-C41	σ	C41-C42	σ*	6.00	1.31	0.079
C19-C20	σ	C14-C19	σ*	5.96	1.26	0.077
С29-Н32	σ	S28-C31	σ*	5.67	0.74	0.058
C41-S43	σ	C42-C51	σ*	5.31	1.11	0.069
C139-H141	σ	C143-C144	σ*	5.28	1.06	0.067
C39-C145	σ	C38-C39	σ*	4.99	1.30	0.072
С55-Н56	σ	C15-C16	σ*	4.47	1.07	0.062
С70-Н72	σ	C64-C66	σ*	3.98	1.11	0.059
C114-S142	σ	C113-C139	σ*	3.94	1.25	0.063
C181-H183	σ	C177-C180	σ*	3.61	1.14	0.057
C19-C20	σ	C14-C15	σ*	2.99	1.32	0.056
C73-C75	σ	С75-Н79	σ*	2.02	1.12	0.043
C65-C68	σ	С70-Н72	σ*	1.98	1.14	0.042
C120-N121	σ	C116-C118	σ*	0.50	1.65	0.026
O127	LP(2)	C78-C80	π^*	33.20	0.36	0.104
S142	LP(2)	C112-C115	π^*	27.02	0.28	0.078
S13	LP(2)	C9-C10	π^*	26.52	0.29	0.078
F187	LP(2)	C139-C144	π*	0.51	0.48	0.015

Table S16: Natural bond orbitals analysis for TNPD3 with its representative values

O119	LP(2)	C112-C117	σ*	21.74	0.75	0.116
O101	LP(1)	C65-C68	σ*	7.46	1.15	0.083
F186	LP(2)	C113-C139	σ*	0.50	1.02	0.020

Donor(i)	Type	Acceptor(i)	Type	<i>E</i> (2)	E(j)- $E(i)$	F(i,j)
	- 5 PC	() () () () () () () () () () () () () (- 5 P •	[kcal/mol]	<i>a.u</i>	<i>a.u</i>
C44-C45	π	C109-C110	π^*	31.01	0.31	0.088
C143-C144	π	N184-O186	π^*	30.58	0.15	0.065
C109-C110	π	C116-C118	π^*	26.48	0.30	0.080
C143-C144	π	C113-C139	π^*	25.78	0.31	0.079
C83-C85	π	C82-C84	π^*	24.75	0.30	0.078
C165-C167	π	C170-C172	π^*	23.80	0.30	0.076
C113-C139	π	C114-C138	π^*	22.99	0.28	0.072
C145-C147	π	C150-C152	π^*	21.83	0.29	0.071
C5-C6	π	C1-C2	π^*	20.68	0.30	0.072
C3-C4	π	C1-C2	π^*	19.87	0.30	0.070
C66-C70	π	C63-C64	π^*	18.34	0.30	0.068
C156-C158	π	C160-C162	π^*	17.98	0.32	0.068
C11-C12	π	C9-C10	π*	16.71	0.32	0.068
C35-C36	π	C38-C 39	π^*	15.67	0.31	0.065
C22-C24	π	C35-C36	π^*	11.78	0.32	0.058
C92-C94	π	C9-C10	π^*	1.37	0.29	0.018
C120-N121	π	C122-N123	π^*	0.63	0.47	0.015
C109-H111	σ	S43-C45	σ*	10.01	0.73	0.076
C118-C120	σ	C120-N121	σ*	8.34	1.62	0.104
C3-C4	σ	C9-S13	σ*	7.39	0.91	0.073
C1-C6	σ	C17-S18	σ*	7.36	0.91	0.073
C109-H111	σ	C110-C117	σ*	7.18	0.97	0.075
C11-C12	σ	C10-C34	σ*	6.64	1.15	0.078
C158-H161	σ	C156-C157	σ*	5.84	1.08	0.071
C39-C145	σ	C38-C39	σ*	4.99	1.30	0.072
C139-C144	σ	C113-C139	σ*	3.89	1.31	0.064
C94-C97	σ	O133-C134	σ*	3.64	1.01	0.054
C22-C24	σ	C20-C22	σ*	3.63	1.29	0.061
C181-H183	σ	C177-C180	σ*	3.61	1.14	0.057
C170-C172	σ	C167-C170	σ*	3.47	1.30	0.060
C4-C34	σ	C4-C5	σ*	2.99	1.21	0.054
C148-C152	σ	N155-C156	σ*	2.92	1.12	0.051
C165-C166	σ	N155-C165	σ*	2.01	1.14	0.043
C112-C117	σ	C117-O119	σ*	1.99	1.26	0.045

Table S17: Natural bond orbitals analysis for TNPD4 with its representative values

C120-N121	σ	C116-C118	σ*	0.50	1.65	0.026
O127	LP(2)	C78-C80	π^*	33.17	0.36	0.104
O102	LP(2)	C87-C89	π^*	32.36	0.36	0.103
N155	LP(1)	C156-C158	π^*	5.24	0.30	0.036
O119	LP(2)	C112-C117	σ*	21.69	0.75	0.116
O186	LP(2)	N184-O185	σ*	20.60	0.76	0.113
S43	LP(1)	C45-C109	σ*	0.55	1.21	0.023

Table S18: Natural bond orbitals analysis for TNPD5 with its representative values

Donor(<i>i</i>)	Туре	Acceptor(j)	Туре	E(2)	E(j)-E(i)	F(i,j)
C44-C45	π	C109-C110	π*	32.04	0.31	0.089
C109-C110	π	C116-C118	π^*	27.30	0.29	0.081
C5-C6	π	C3-C4	π^*	25.70	0.30	0.079
C83-C85	π	C82-C84	π*	24.71	0.30	0.078
C150-C152	π	C145-C147	π*	23.96	0.30	0.077
C113-C114	π	C138-C143	π^*	22.77	0.30	0.075
C145-C147	π	C146-C148	π^*	21.98	0.30	0.073
C170-C172	π	C165-C167	π^*	20.56	0.29	0.070
C3-C4	π	C1-C2	π^*	19.88	0.30	0.070
C177-C180	π	C176-C181	π^*	18.75	0.31	0.069
C156-C158	π	C160-C162	π^*	17.99	0.32	0.068
C44-C45	π	C41-C42	π^*	17.05	0.30	0.065
C29-C31	π	C26-C27	π^*	16.97	0.31	0.067
C41-C42	π	C29-C31	π^*	15.34	0.30	0.061
C35-C36	π	C22-C24	π^*	14.45	0.31	0.062
C117-O119	π	C112-C115	π^*	4.84	0.41	0.043
C117-O119	π	C109-C110	π^*	3.58	0.43	0.038
C122-N123	π	C120-N121	π^*	0.63	0.47	0.015
C109-H111	σ	S43-C45	σ*	10.08	0.73	0.077
C143-C186	σ	C186-N187	σ*	8.96	1.62	0.108
C118-C122	σ	C122-N123	σ*	8.13	1.61	0.103
C3-C4	σ	C9-S13	σ*	7.40	0.91	0.073
C118-C120	σ	C116-C118	σ*	6.21	1.34	0.081
C19-C20	σ	C14-C19	σ*	5.99	1.26	0.078
C39-C145	σ	C38-C39	σ*	4.98	1.30	0.072
C10-C11	σ	C9-C10	σ*	4.89	1.27	0.071
C180-H182	σ	C159-C177	σ*	4.64	1.08	0.063
C15-C55	σ	C14-S18	σ*	3.99	0.85	0.052
C143-C144	σ	C184-N185	σ*	3.76	1.60	0.070
C165-C166	σ	N155-C156	σ*	3.16	1.12	0.053
C180-C181	σ	C177-H179	σ*	2.88	1.11	0.051
C82-C84	σ	С83-Н86	σ*	2.64	1.13	0.049

C166-C168	σ	С172-Н175	σ*	2.40	1.14	0.047
C2-C3	σ	C4-C34	σ*	2.37	1.11	0.046
C78-O127	σ	C78-C80	σ*	1.21	1.51	0.038
C120-N121	σ	C116-C118	σ*	0.50	1.64	0.026
O127	LP(2)	C78-C80	π^*	33.18	0.36	0.104
S142	LP(2)	C112-C115	π^*	26.91	0.28	0.078
N155	LP(1)	C156-C158	π^*	5.38	0.30	0.036
O119	LP(2)	C112-C117	σ^*	21.74	0.75	0.116
O119	LP(2)	C112-C117	σ*	21.85	0.75	0.116
N121	LP(1)	C118-C120	σ*	12.64	1.04	0.103
S43	LP(1)	C45-C109	σ*	0.55	1.21	0.023

Donor(i)	Type	Accentor(i)	tor(i) Type	<i>E</i> (2)	E(j)- $E(i)$	F(i,j)
	турс	Acceptory	турс	[kcal/mol]	[<i>a</i> . <i>u</i>]	[<i>a</i> . <i>u</i>]
C44-C45	π	C109–C110	π^*	29.78	0.31	0.087
C5-C6	π	C3-C4	π^*	25.53	0.30	0.078
C83-C85	π	C82-C84	π^*	24.59	0.30	0.078
C66-C70	π	C65-C68	π^*	23.99	0.30	0.077
C160-C162	π	C159-C161	π^*	22.92	0.29	0.075
C140-C142	π	C144-C146	π^*	21.98	0.30	0.074
C5-C6	π	C1-C2	π^*	20.81	0.30	0.072
C112-C115	π	C117-O119	π^*	19.88	0.32	0.073
C171-C174	π	С170-С 75	π^*	18.75	0.31	0.069
C150-C152	π	C154-C156	π^*	17.96	0.32	0.068
C29-C31	π	C26-C27	π^*	16.96	0.31	0.067
C35-C36	π	C38-C39	π^*	15.68	0.31	0.065
C5-C6	π	C16-C17	π^*	14.55	0.30	0.059
C117-O119	π	C112-C115	π^*	4.65	0.42	0.044
C1-C2	π	C73-C75	π^*	1.06	0.31	0.016
C122-N123	π	C120-N121	π^*	0.62	0.47	0.015
C109-H111	σ	S43-C45	σ*	9.94	0.73	0.076
C118-C120	σ	C120-N	σ*	8.33	1.62	0.104
C3-C4	σ	C9-S13	σ^*	7.4	0.90	0.073
C24-C35	σ	C35-C36	σ*	6.87	1.32	0.085
C19-C20	σ	C14-C9	σ*	5.97	1.26	0.077
C44-H46	σ	S43-C45	σ*	5.23	0.74	0.056
C39-C139	σ	C38-C39	σ*	4.99	1.30	0.072
C166-H169	σ	C161-C164	σ*	3.99	1.11	0.060
C44-H46	σ	C41-C42	σ*	3.33	1.11	0.054
C35-C36	σ	C38-H40	σ*	2.99	1.14	0.052
C1-C33	σ	C16-C33	σ*	1.99	1.03	0.040

Table S19: Natural bond orbitals analysis for TNPD6 with its representative values

C146-N149	σ	C159-C161	σ*	1.90	1.37	0.046
C36-C38	σ	C47-H49	σ^*	0.61	1.07	0.023
C120-N121	σ	C116-C118	σ^*	0.50	1.64	0.026
O127	LP(2)	C78-C80	π^*	33.19	0.36	0.104
S138	LP(2)	C112-C115	π^*	27.31	0.28	0.078
N149	LP(1)	C159-C161	π^*	25.84	0.30	0.081
N149	LP(1)	C 150-C152	π^*	5.07	0.30	0.035
O119	LP(2)	C112-C117	σ^*	21.56	0.76	0.116
N123	LP(1)	C118-C122	σ^*	12.59	1.04	0.102
S43	LP(1)	C45-C109	σ*	0.55	1.21	0.023

Table S20: Calculated energies (*E*) and energy gap (ΔE) of HOMO-1, LUMO+1, HOMO-2 and LUMO+2 for **TNPR**, **TNPD1-TNPD6**.

Compounds	E _{HOMO-1}	$E_{\text{LUMO+1}}$	ΔE	E _{HOMO-2}	$E_{\text{LUMO+2}}$	ΔE			
TNPR	-5.988	-3.26	2.728	-6.483	-2.611	3.872			
TNPD1	-5.621	-2.815	2.806	-6.004	-2.047	3.957			
TNPD2	-5.621	-2.787	2.834	-6.003	-2.043	3.96			
TNPD3	-5.634	-3.501	2.133	-6.02	-2.05	3.97			
TNPD4	-5.627	-2.870	2.757	-6.004	-2.591	3.413			
TNPD5	-5.639	-2.92	2.719	-6.03	-2.273	3.757			
TNPD6	-5.616	-2.645	2.971	-5.997	-2.016	3.981			
TNPD5 TNPD6	-5.639 -5.616	-2.92 -2.645	2.719 2.971	-6.03 -5.997	-2.273 -2.016	3.757 3.981			

Table S21: Wavelength, excitation energy and oscillator strength of TNPR in gas phase

NO	$\lambda_{\rm DFT}$	E (eV)	$f_{ m os}$	MO contributions
1	671.128	1.847	2.637	H→L (86%), H-1→L+1 (5%), H→L+1 (5%)
2	621.693	1.994	0.029	H→L+1 (91%), H-1→L (2%), H→L (5%)
3	518.090	2.393	0.217	H-1→L (89%), H→L (3%)
4	507.466	2.443	0.949	H-1→L+1 (73%), H→L (5%), H→L+1 (2%), H→L+2 (6%), H→L+4 (4%)
5	485.831	2.552	0.077	H-1 \rightarrow L+1 (10%), H \rightarrow L+2 (70%), H-1 \rightarrow L+3 (8%), H \rightarrow L+3 (5%)
6	478.205	2.593	0.002	$H-1 \rightarrow L+2 (10\%), H \rightarrow L+3 (79\%), H \rightarrow L+2 (6\%)$

 Table S22: Wavelength, excitation energy and oscillator strength of investigated compound (TNPD1) in gas phase

NO	DFT λ (<i>nm</i>)	E(eV)	fos	MO contributions
1	807.241	1.536	0.387	H→L (93%), H-1→L (5%)
2	666.045	1.862	0.430	H-1→L (82%), H-2→L (9%), H→L (7%)
3	601.165	2.062	0.658	H-1→L+1 (11%), H→L+1 (83%), H-2→L+1 (2%)

				$9 \rightarrow L(5\%)$
6	479.537	2.586	0.446	H-4→L (27%), H-3→L (36%), H-2→L (13%), H→L+2 (13%), H-
5	518.459	2.391	0.560	$H-2 \rightarrow L+1 (12\%), H-1 \rightarrow L+1 (66\%), H \rightarrow L+1 (16\%), H \rightarrow L+2 (2\%)$
4	501.245	2.209	0.239	Π -2 \rightarrow L (/4/0), Π -1 \rightarrow L (12/0), Π -4 \rightarrow L (//0)
1	561 242	2 200	0 220	$\mathbf{H} \rightarrow \mathbf{H} (740/) \mathbf{H} \rightarrow \mathbf{H} (120/) \mathbf{H} \rightarrow \mathbf{H} (70/)$

Table S23: Wavelength, excitation energy and oscillator strength of investigated compound (TNPD2) in gas phase

NO	DFT λ (<i>nm</i>)	E(eV)	$f_{\rm OS}$	MO contributions
1	783.668	1.582	0.407	H→L (92%), H-1→L (6%)
2	652.034	1.902	0.464	H-1→L (80%), H-2→L (9%), H→L (8%)
3	587.854	2.109	0.699	H-1→L+1 (12%), H→L+1 (82%), H-2→L+1 (2%)
4	550.527	2.252	0.235	H-2→L (71%), H-1→L (13%), H-4→L (7%), H-3→L (4%)
5	509.468	2.434	0.596	H-2→L+1 (12%), H-1→L+1 (63%), H→L+1 (17%), H→L+2 (3%)
6	474.908	2.611	0.842	H-4→L (17%), H-3→L (22%), H-2→L (14%), H→L+2 (33%), H-
				9→L (4%), H→L+3 (2%)

MO=molecular orbital, H=HOMO, L=LUMO, f_{os} = oscillator strength, wavelength= λ (*nm*)

 Table S24: Wavelength, excitation energy and oscillator strength of investigated compound (TNPD3) in gas phase

NO	DFT λ (nm)	E(eV)	fos	MO contributions
1	843.602	1.470	0.339	H→L (94%), H-1→L (5%)
2	687.693	1.803	0.384	H-1→L (84%), H-2→L (8%), H→L (6%)
3	608.900	2.036	0.626	H-1→L+1 (10%), H→L+1 (85%), H-2→L+1 (2%)
4	577.772	2.146	0.266	H-2→L (77%), H-1→L (10%), H-4→L (7%)
5	522.831	2.371	0.514	H-2→L+1 (12%), H-1→L+1 (68%), H→L+1 (14%),
6	488.974	2.536	0.281	H-4→L (43%), H-3→L (28%), H-2→L (12%), H-9→L (6%),
				H→L+2 (4%)

MO=molecular orbital, H=HOMO, L=LUMO, f_{os} = oscillator strength, wavelength= λ (*nm*)

 Table S25: Wavelength, excitation energy and oscillator strength of investigated compound (TNPD4) in gas phase

NO	$\lambda_{\rm DFT}$	E (eV)	$f_{ m os}$	MO contributions
1	816.814	1.518	0.369	H→L (94%), H-1→L (5%)
2	668.523	1.855	0.407	H-1→L (82%), H-2→L (9%), H→L (6%)
3	610.309	2.032	0.594	H→L+1 (85%), H-2→L+1 (2%), H-1→L+1 (9%)
4	566.837	2.187	0.247	H-2→L (74%), H-1→L (13%), H-4→L (7%)
5	523.914	2.367	0.608	$H-2 \rightarrow L+1$ (12%), $H-1 \rightarrow L+1$ (63%), $H \rightarrow L+1$ (14%),
				H→L+2 (4%), H→L+3 (3%)
6	501.981	2.470	0.041	$H \rightarrow L+2 (89\%), H-1 \rightarrow L+1 (6\%), H-1 \rightarrow L+2 (3\%)$

NO	DFT λ (nm)	E(eV)	$f_{ m OS}$	MO contributions
1	931.302	1.331	0.264	H→L (96%), H-1→L (3%)
2	742.376	1.670	0.377	H-1→L (88%), H-2→L (6%), H→L (4%)
3	642.372	1.930	0.563	H→L+1 (88%), H-1→L+1 (8%)
4	610.459	2.031	0.246	H-2→L (80%), H-4→L (7%), H-1→L (8%)
5	548.821	2.259	0.564	H-2→L+1 (10%), H-1→L+1 (73%), H→L+1 (11%),
6	517.982	2.394	0.120	H-4→L (18%), H-3→L (67%), H-9→L (2%), H-2→L (8%)

Table S26: Wavelength, excitation energy and oscillator strength of investigated compound (TNPD5) in gas phase

 Table S27: Wavelength, excitation energy and oscillator strength of investigated compound (TNPD6) in gas phase

NO	DFT λ (nm)	E(eV)	$f_{\rm OS}$	MO contributions
1	697.442	1.778	0.653	H→L (90%), H-1→L (7%)
2	588.272	2.108	0.600	H-1→L (77%), H→L (10%), H-2→L (9%)
3	542.316	2.286	0.607	H-1→L+1 (12%), H→L+1 (78%), H-2→L+1 (3%), H→L+2 (3%)
4	506.017	2.450	0.410	H-2→L (72%), H-1→L (13%), H-4→L (4%), H-3→L (5%), H→L+2 (2%)
5	474.199	2.615	0.618	$H-2 \rightarrow L+1 (11\%), H-1 \rightarrow L+1 (51\%), H \rightarrow L+1 (21\%), H \rightarrow L+2 (11\%),$
6	463.111	2.677	0.910	H-1→L+1 (13%), H→L+2 (67%), H-2→L (6%), H-2→L+1 (2%), H-
				$1 \rightarrow L+3 (3\%), H \rightarrow L+3 (5\%)$

MO=molecular orbital, H=HOMO, L=LUMO, f_{os} = oscillator strength, wavelength= λ (*nm*)

 Table S28: Wavelength, excitation energy and oscillator strength of reference compound (TNPR) in chloroform

	NO	DFT λ (nm)	E (eV)	$f_{ m os}$	MO contributions
	1	706.785	1.754	2.960	H→L (86%), H-1→L+1 (8%)
	2	658.895	1.882	0.016	H→L+1 (89%), H-1→L (7%)
	3	538.757	2.301	0.064	H-1→L (83%), H-2→L+1 (5%), H→L+1 (7%)
	4	525.513	2.359	0.921	H-1→L+1 (75%), H→L (10%), H-2→L (5%), H→L+2
					(3%), H→L+4 (2%)
	5	502.530	2.467	0.166	H-1→L+3 (10%), H→L+2 (77%), H-1→L+1 (6%)
	6	493.214	2.514	0.002	H-1→L+2 (12%), H→L+3 (82%),
~					

 Table S29: Wavelength, excitation energy and oscillator strength of investigated compound (TNPD1) in chloroform

 NO	DFT λ (nm)	E(eV)	f_{os}	MO contributions
1	774.127	1.602	0.704	H-1→L (13%), H→L (83%), H-2→L (3%)
2	652.720	1.900	0.382	H-2→L (11%), H-1→L (68%), H→L (17%),

6	478.168	2.593	1.561	H→L+2 (79%), H-1→L+4 (2%), H→L+3 (4%), H→L+4 (2%)
5	503.285	2.464	0.242	H-2→L+1 (12%), H-1→L+1 (55%), H→L+1 (27%),
4	550.112	2.254	0.165	H-2→L (68%), H-1→L (18%), H-3→L (9%)
3	583.537	2.125	0.969	H-1→L+1 (19%), H→L+1 (70%), H-2→L+1 (5%), H→L+2 (3%)

Table S30: Wavelength, excitation energy and oscillator strength of investigated compound (TNPD2) in chloroform

NO	DFT λ (nm)	E(eV)	f_{os}	MO contributions
1	766.754	1.617	0.690	H-1→L (13%), H→L (82%), H-2→L (3%)
2	649.574	1.909	0.395	H-2→L (11%), H-1→L (67%), H→L (18%),
3	576.939	2.149	1.007	H-1→L+1 (20%), H→L+1 (68%), H-2→L+1 (4%), H→L+2 (3%)
4	546.836	2.267	0.170	H-3→L (11%), H-2→L (66%), H-1→L (18%),
5	499.332	2.483	0.243	H-2→L+1 (12%), H-1→L+1 (54%), H→L+1 (28%),
6	479.018	2.588	1.572	H→L+2 (80%), H-1→L+3 (3%), H→L+3 (6%)

MO=molecular orbital, H=HOMO, L=LUMO, f_{os} = oscillator strength, wavelength= λ (*nm*)

Table S31: Wavelength, excitation energy and oscillator strength of investigated compound (TNPD3) in chloroform

NO	DFT λ (nm)	E(eV)	f_{os}	MO contributions
1	799.279	1.551	0.627	H-1→L (11%), H→L (85%), H-2→L (2%)
2	667.910	1.856	0.386	H-2→L (11%), H-1→L (71%), H→L (14%),
3	585.632	2.117	0.953	H-1→L+1 (17%), H→L+1 (72%), H-2→L+1 (5%), H→L+2 (2%)
4	564.463	2.197	0.172	H-2→L (70%), H-1→L (17%), H-3→L (9%)
5	503.755	2.461	0.263	H-2→L+1 (13%), H-1→L+1 (56%), H→L+1 (26%),
6	478.039	2.594	1.035	H-3→L (33%), H-2→L (11%), H→L+2 (39%), H-9→L (4%), H-
				$4 \rightarrow L (3\%), H \rightarrow L+3 (2\%)$

Table S32:	Wavelength,	excitation energy	and oscillator	strength of inve	estigated comp	pound (TNPD4)	in
chloroform							
	DET						

NO	DFT λ (nm)	E (eV)	$f_{ m os}$	MO contributions
1	780.315	1.589	0.665	H-1→L (11%), H→L (84%), H-2→L (3%)
2	654.236	1.895	0.384	H-2→L (12%), H-1→L (68%), H→L (16%),
3	592.121	2.094	0.868	H-1→L+1 (16%), H→L+1 (72%), H-2→L+1 (4%), H→L+3 (2%)
4	555.186	2.233	0.161	H-2→L (68%), H-1→L (19%), H-3→L (8%)
5	512.925	2.417	0.430	H-2→L+1 (10%), H-1→L+1 (39%), H→L+1 (26%), H→L+2 (15%), H-1→L+2 (4%)
6	498.008	2.490	0.077	H-1→L+1 (20%), H→L+2 (67%), H-2→L+1 (3%), H- 1→L+2 (2%), H→L+3 (5%)

NO	DFT λ (nm)	E(eV)	f_{os}	MO contributions
1	852.242	1.455	0.553	H-1→L (10%), H→L (87%),
2	709.413	1.748	0.408	H-1→L (75%), H→L (13%), H-2→L (9%)
3	604.241	2.052	0.966	H-1 \rightarrow L+1 (18%), H \rightarrow L+1 (73%), H-2 \rightarrow L+1 (4%)
4	586.796	2.113	0.144	$H-2 \rightarrow L (73\%), H-1 \rightarrow L (14\%), H-4 \rightarrow L (2\%), H-3 \rightarrow L (8\%)$
5	521.402	2.378	0.298	H-2 \rightarrow L+1 (11%), H-1 \rightarrow L+1 (58%), H \rightarrow L+1 (25%),
6	495.145	2.504	0.178	$H-3 \rightarrow L$ (61%), $H-2 \rightarrow L$ (15%), $H-9 \rightarrow L$ (6%), $H-4 \rightarrow L$ (9%)

 Table S33: Wavelength, excitation energy and oscillator strength of investigated compound (TNPD5) in chloroform

Table S34: Wavelength, excitation energy and oscillator strength of investigated compound (TNPD6) in chloroform

. (3%)
L (20%),
-2→L+1 (5%), H→L+2 (4%)
→L (19%),
1→L+1 (9%), H-1→L+3 (3%),
$H \rightarrow L+1 (31\%), H \rightarrow L+2 (7\%)$

Table S35: Percentages of donor, π -spacer and acceptor for HOMOs and LUMOs of **TNPR** and **TNPD1**-**TNPD6**

Compounds		HOMO		LUMO		
Compounds	Acceptor	Donor	π-spacer	Acceptor	Donor	π-spacer
TNPR	7.6		92.4	62.6		37.4
TNPD1	1.1	20.8	78.1	82.0	0.0	18.0
TNPD2	1.0	21.3	77.7	82.5	0.0	17.5
TNPD3	1.0	20.3	78.7	82.9	0.0	17.1
TNPD4	1.1	19.5	79.4	82.7	0.0	17.3
TNPD5	1.0	22.7	76.3	84.0	0.0	16.0
TNPD6	1.0	19.4	79.6	75.4	0.0	24.6

Table S36: Dipole polarizability (D) of the studied compounds (TNPR and TNPD1-TNPD6).

Dipole	•	• •	× /	• · · ·		<i>,</i>	
Moment	TNPR	TNPD1	TNPD2	TNPD3	TNPD4	TNPD5	TNPD6
μ_x	0.8570	-7.9798	10.3447	11.3761	-8.2252	-11.7648	-9.4745
μ_v	2.3446	4.0619	-1.9208	-4.9929	4.0918	9.6547	-0.5668

μ_z	0.6720	1.2212	0.7554	0.4143	1.0095	1.5017	-0.4329
μ_{total}	2.5852	9.0370	10.5486	12.4305	9.2421	15.2931	9.5013
Polarizabilit							
у							
α_{xx}	6.525×10 ⁻²²	5.628×10 ⁻²²	5.638x10 ⁻²²	5.672×10 ⁻²²	5.653×10 ⁻²²	5.898×10 ⁻²²	5.281×10 ⁻²²
α_{vv}	2.464×10 ⁻²²	2.897×10 ⁻²²	2.967x10 ⁻²²	2.811×10 ⁻²²	2.873×10 ⁻²²	2.998×10 ⁻²²	2.294×10-22
α_{zz}	1.605×10 ⁻²²	1.948×10 ⁻²²	5.859x10 ⁻²²	1.998×10 ⁻²²	1.930×10 ⁻²²	1.942×10 ⁻²²	2.179×10 ⁻²²
α_{total}	3.532×10 ⁻²²	3.491×10 ⁻²²	3.510x10 ⁻²²	3.494×10 ⁻²²	3.485×10 ⁻²²	3.613×10 ⁻²²	3.251×10 ⁻²²
2 nd Hyper							
pol.							
γ_X	7.977×10 ⁻³²	6.057×10 ⁻³²	5.725×10 ⁻³²	6.831×10 ⁻³²	6.216×10 ⁻³²	9.307×10-32	4.099×10-32
γ_Y	1.620×10 ⁻³⁴	4.220×10-34	6.275×10 ⁻³⁴	6.512×10 ⁻³⁴	4.562×10-34	8.709×10 ⁻³⁴	2.990×10-34
γz	2.055×10-34	6.896×10 ⁻³⁴	4.780×10 ⁻³⁴	4.799×10 ⁻³⁴	5.030×10 ⁻³⁴	7.766×10 ⁻³⁴	2.675×10-34
Average <y></y>	8.014×10 ⁻³²	6.168×10 ⁻³²	5.835×10-32	6.944×10 ⁻³²	6.312×10 ⁻³²	9.472×10-32	4.157×10-32
Magnitude	7.977×10 ⁻³²	6.058×10 ⁻³²	5.725×10 ⁻³²	6.831×10 ⁻³²	6.216×10 ⁻³²	9.308×10-32	4.100×10 ⁻³²
of y							

Table S37: Frequency dependent second hyperpolarizability (*esu*) of studied compounds (TNPR and TNPD1-TNPD6).

Parameters	Frequency	TNPR	TNPD1	TNPD2	TNPD3
	ω				
$\gamma(-\omega,\omega,0,0)$	0.000	8.014×10 ⁻³²	6.168×10 ⁻³²	5.835x10 ⁻³²	6.944×10 ⁻³²
	1907.21 <i>nm</i>	1.084×10 ⁻³¹	9.584×10 ⁻³²	8.970x10 ⁻³²	1.148×10 ⁻³¹
$\gamma(-2\omega,\omega,\omega,0)$	0.000	8.014×10 ⁻³²	6.168×10 ⁻³²	5.835x10 ⁻³²	6.944×10 ⁻³²
	1907.21 <i>nm</i>	3.716×10 ⁻³¹	-1.689×10 ⁻²⁸	5.788x10 ⁻³⁰	-1.112×10-

Continued...

TNPD4	TNPD5	TNPD6
6.312×10 ⁻³²	9.471×10-32	4.156×10-32
9.937×10-32	1.804×10-31	5.673×10-32
6.312×10 ⁻³²	9.472×10-32	4.156×10-32
-4.438×10 ⁻³⁰	-4.235×10 ⁻³¹	2.270×10-31

Table S38: The computed first hyperpolarizability (β_{tot}) and major contributing tensors (*esu*) of **TNPR** and **TNPD1-TNPD6**.

Polarizability	TNPR	TNPD1	TNPD2	TNPD3
β_{xxx}	-2.968×10 ⁻³⁰	-3.421×10 ⁻²⁷	3.243x10 ⁻²⁷	3.719×10 ⁻²⁷
β_{xxy}	-8.803×10 ⁻²⁹	-5.478×10-30	4.765x10 ⁻²⁹	1.963×10 ⁻²⁸
β_{xyy}	4.350×10-30	5.916×10 ⁻²⁹	-7.975x10 ⁻²⁹	-3.971×10 ⁻²⁹
β_{yyy}	3.627×10 ⁻³⁰	-5.220×10 ⁻²⁹	1.025x10 ⁻²⁸	2.843×10 ⁻²⁹

β_{xxz}	2.756×10 ⁻²⁸	3.248×10 ⁻²⁸	2.434x10 ⁻²⁸	2.405×10 ⁻²⁸
β_{vvz}	-6.078×10-30	-1.173×10 ⁻²⁹	-9.759x10 ⁻³⁰	-6.791×10-31
β _{x77}	2.119×10 ⁻²⁹	-4.306×10 ⁻²⁹	2.700x10 ⁻²⁹	2.275×10 ⁻²⁹
β _{ν77}	-3.105×10 ⁻³⁰	1.686×10-30	-2.885x10 ⁻³⁰	2.436×10-30
β ₇₇₇	1.552×10 ⁻³⁰	3.578×10 ⁻³⁰	4.897x10 ⁻³¹	-5.767×10-32
β _{total}	2.858×10 ⁻²⁸	3.420×10 ⁻²⁷	3.202x10 ⁻²⁷	3.717×10 ⁻²⁷

	Continued	
TNPD4	TNPD5	TNPD6
-3.478×10 ⁻²⁷	-4.620×10 ⁻²⁷	-2.526×10 ⁻²⁷
-5.501×10 ⁻²⁹	1.363×10 ⁻²⁹	-9.989×10 ⁻²⁹
5.923×10 ⁻²⁹	2.945×10 ⁻²⁹	1.188×10 ⁻²⁹
-3.211×10 ⁻²⁹	-2.362×10 ⁻²⁹	-9.186×10 ⁻³⁰
2.544×10 ⁻²⁸	3.968×10 ⁻²⁸	1.864×10 ⁻²⁸
-7.260×10 ⁻³⁰	-2.302×10 ⁻³⁰	-9.600×10 ⁻³⁰
-2.575×10 ⁻²⁹	-4.512×10 ⁻²⁹	1.134×10 ⁻³⁰
5.744×10 ⁻³²	4.233×10-30	-1.066×10 ⁻²⁹
1.650×10 ⁻³⁰	2.695×10-30	-1.104×10 ⁻²⁹
3.455×10 ⁻²⁷	4.653×10 ⁻²⁷	2.522×10 ⁻²⁷

 Table S39: Frequency dependent first hyperpolarizability (esu) of studied compounds (TNPR and TNPD1-TNPD6).

	Parameters	Frequency ω	TNPR	TNPD1	TNPD2	TNPD3
Static	β (- $\omega;\omega,0,$)	0.000	2.858×10 ⁻²⁸	3.420×10 ⁻²⁷	3.202x10 ⁻²⁷	3.717×10 ⁻²⁷
	β (-2, $\omega;\omega,\omega)$	0.000	2.858×10 ⁻²⁸	3.420×10 ⁻²⁷	3.202x10 ⁻²⁷	3.717×10 ⁻²⁷
Specific	β (- $\omega;\omega,0$)	1907.21 <i>nm</i>	3.248×10 ⁻²⁸	4.315×10 ⁻²⁷	4.039x10 ⁻²⁷	4.786×10 ⁻²⁷
	$\beta (-2\omega;\omega,\omega)$	1907.21 <i>nm</i>	6.696×10 ⁻²⁸	1.189×10 ⁻²⁶	1.079 x10 ⁻²⁶	1.492×10 ⁻²⁶

Continued...

TNPD4	TNPD5	TNPD6
3.455×10 ⁻²⁷	4.653×10 ⁻²⁷	2.522×10 ⁻²⁷
3.455×10 ⁻²⁷	4.653×10 ⁻²⁷	2.522×10 ⁻²⁷
4.382×10-27	6.233×10 ⁻²⁷	3.024×10 ⁻²⁷
1.238×10 ⁻²⁶	2.776×10 ⁻²⁶	6.337×10 ⁻²⁷

 Table S40: IUPAC names of reference and derivative compounds.

TNPR	2,2'-((2Z,2'Z)-5',5'''-4(4,4,9,9-tetrakis(3-isobutoxyphenyl)-3,8-dimethyl-4,9-dihydro- <i>s</i> - indaceno[1,2- <i>b</i> :5,6- <i>b</i> ']dithiophene-2,7-diyl)bis(3-methyl-[2,2'-bithiophene]-5',5- diyl))bis(methanylylidene))bis(3-oxo-2,3-dihydro-1 <i>H</i> -indene-2,1-diylidene))dimalononitrile
TNPD1	(Z)-2-(7-cyano-2-((3-methyl-5'-(4,4,9,9-tetrakis(3-isobutoxyphenyl)-3,8-dimethyl-7-(3'- methyl-5'-(4-naphthalen-1-yl(phenyl)amino)phenyl)-[2,2'-bithiophene]-5-yl)-4,9-dihydro-s- indaceno[1,2-b:5,6-b']dithiophene-2-yl)-[2,2'-bithiophene]-5-yl] methylene)-1-oxo-1 <i>H</i> - benzo[<i>b</i>]cyclopenta[<i>d</i>]thiophene-3(2 <i>H</i>)-ylidene)malonitrile
TNPD2	(Z)-2-(6,7-dichloro-2-((3-methyl-5'-(4,4,9,9-tetrakis(3-isobutoxyphenyl)-3,8-dimethyl-7-(3'- methyl-5'-(4-naphthalen-1-yl(phenyl)amino)phenyl)-[2,2'-bithiophene]-5-yl)-4,9-dihydro-s- indaceno[1,2-b:5,6-b']dithiophene-2-yl)-[2,2'-bithiophene]-5-yl] methylene)-1-oxo-1 <i>H</i> - benzo[<i>b</i>]cyclopenta[<i>d</i>]thiophen-3(2 <i>H</i>)-ylidene)malonitrile
TNPD3	(Z)-2-(2-((3-methyl-5'-(4,4,9,9-tetrakis(3-isobutoxyphenyl)-3,8-dimethyl-7-(3'-methyl-5'-(4-naphthalen-1-yl(phenyl)amino)phenyl)-[2,2'-bithiophene]-5-yl)-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-2-yl) -[2,2'-bithiophene]-5-yl] methylene)-1-oxo-6,7-bis(trifluoromethyl)- 1H-benzo[b]cyclopenta[d]thiophene-3(2H)-ylidene)malonitrile
TNPD4	(Z)-2-(2-((3-methyl-5'-(4,4,9,9-tetrakis(3-isobutoxyphenyl)-3,8-dimethyl-7-(3'-methyl-5'-(4- naphthalen-1-yl(phenyl)amino)phenyl)-[2,2'-bithiophene]-5-yl)-4,9-dihydro-s-indaceno[1,2- b:5,6-b']dithiophene-2-yl)-[2,2'-bithiophen]-5-yl] methylene)-7-nitro-1-oxo-1H- benzo[b]cyclopenta[d]thiophen-3(2H)-ylidene)malonitrile
TNPD5	(Z)-1-(dicyanomethylene)-2-((3-methyl-5'-(4,4,9,9-tetrakis(3-isobutoxyphenyl)-3,8-dimethyl- 7-(3'-methyl-5'-(4-naphthalen-1-yl(phenyl)amino)phenyl)-[2,2'-bithiophene]-5-yl)-4,9- dihydro- <i>s</i> -indaceno[1,2- <i>b</i> :5,6- <i>b</i> ']dithiophene-2-yl)-[2,2'-bithiophen]-5-yl] methylene)-3-oxo- 2,3-dihydro-1 <i>H</i> -benzo[<i>b</i>]cyclopenta[<i>d</i>]thiophene-6,7-dicarbonitrile
TNPD6	(Z)-2-(253-methyl-5'-(4,4,9,9-tetrakis(3-isobutoxyphenyl)-3,8-dimethyl-7-(3'-methyl-5'-(4- naphthalen-1-yl(phenyl)amino)phenyl)-[2,2'-bithiophen]-5-yl)-4,9-dihydro-s-indaceno[1,2- b:5,6-b']dithiophen-2-yl)-[2,2'-bithiophen]-5-yl] methylene)-6-oxo-5,6-dihydro-4 <i>H</i> - cyclopenta[b]thiophen-4-ylidene)malonitrile

TNPD2

TNPD3

TNPD5

HOMO-1

LUMO+2

LUMO+1

НОМО-2

LUMO+2

HOMO-1

LUMO+1

LUMO+2

HOMO-2

LUMO+2

TNPD6

Figure S2: $E_{\text{HOMO-1}}$, $E_{\text{LUMO+1}}$, $E_{\text{HOMO-2}}$ and $E_{\text{LUMO+2}}$ contoured structures of reference (**TNPR**) and designed compounds (**TNPD1-TNPD6**)

Figure S3: Structures of reference (TNPR) and designed compounds (TNPD1-TNPD6)

TNPR

TNPD1

TNPD2

Figure S4: Optimized structures of investigated molecules (TNPR and TNPD1-TNPD6)