Supporting Information

Non-terminal conjugation of small interfering RNAs with spermine improves duplex binding and serum stability with position-specific incorporation

Keisuke Koyasu^a, Akash Chandela^b and Yoshihito Ueno*^{a, b, c}

^aDepartment of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, ^bCourse of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, ^cUnited Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.

*To whom correspondence should be addressed.

Phone: +81-58-293-2919; Fax: +81-58-293-2919.

E-mail: ueno.yoshihito.e7@f.gifu-u.ac.jp

Table of Contents

Fig. S1. UV melting profiles of the RNA duplexes	S2
Fig. S2-3. UV melting profiles of the siRNAs	S2-3
Table S1. Sequence of siRNAs for serum stability	\$3
¹ H and ¹³ C NMR spectra of compounds 3-14 and ³¹ P NMR spectrum of compound 15	S4-S16

Fig. S1. UV melting profiles of the unmodified and modified RNA duplexes in a buffer containing 10 mM sodium phosphate (pH 7.0) and 100 mM NaCl.

Fig. S2. UV melting profiles of the unmodified and modified siRNAs (siRNA 1-4) in a buffer containing 10 mM sodium phosphate (pH 7.0) and 100 mM NaCl.

Fig. S3. UV melting profiles of the unmodified and modified siRNAs (siRNA1, 7-9) in a buffer containing 10 mM sodium phosphate (pH 7.0) and 100 mM NaCl.

Abbreviatio	Abbreviation	Sequence ^a
n of siRNA	of RNA	
siRNA 8		Sense strand
	RNA 5	5'-GGCCUUUCACUACUCCUACUU-3'
	RNA 13	3'-UUCCGGAAAGUGAUGAGGAUG-F-5'
		Antisense strand
CIDNA 0	RNA 6	5'-GGCCU _s UUCACUACUCCUACUU-3'
SIKINA 9	RNA 13	3'-UUCCGGAAAGUGAUGAGGAUG-F-5'
siRNA 10	RNA 7	5'-GGCCUUUCACU _s ACUCCUACUU-3'
	RNA 13	3'-UUCCGGAAAGUGAUGAGGAUG-F-5'
DNA 11	RNA 8	5'-GGCCUUUCACUACUCCU _s ACUU-3'
SIKINA 11	RNA 13	3'-UUCCGGAAAGUGAUGAGGAUG-F-5'
siRNA 12	RNA 10	5'-GGCCU _{ss} UUCACUACUCCUACUU-3'
	RNA 13	3'-UUCCGGAAAGUGAUGAGGAUG-F-5'
DNA 12	RNA 11	5'-GGCCUUUCACU _{ss} ACUCCUACUU-3'
SIKINA 13	RNA 13	3'-UUCCGGAAAGUGAUGAGGAUG-F-5'
DNA 14	RNA 12	5'-GGCCU _s UUCACU _s ACUCCUACUU-3'
SIKINA 14	RNA 13	3'-UUCCGGAAAGUGAUGAGGAUG-F-5'

Table S1. Sequence of siRNAs for Serum stability analysis

^(a) F is fluorescein, U is 2'- *O*Me- 4'-HP-U analog and *s* is spermine molecule.

NMR spectra (¹H, ¹³C and ³¹P)

 ^{13}C {¹H }NMR spectrum of compound **3**

$^1\mathrm{H}$ NMR spectrum of compound 7

^{1}H NMR spectrum of compound **8**

 ^{13}C {¹H }NMR spectrum of compound 10

 ^{13}C {¹H }NMR spectrum of compound 11

 ^{13}C {¹H }NMR spectrum of compound 12

