Supplementary Information's

Facile Synthesis of CuONPs using *Citrus limon* Juice for Enhancing Antibacterial Activity against Methicillin-resistant *Staphylococcus aureus*, Beta-lactamase and Tetracycline-resistant *Escherichia coli*

Abdullah Rafsan ^{a†}, Aminur Rahman ^{a†}, Samia Akter ^a, Nymul Yeachin ^b, Tania Faruqe ^c, Gautam Kumar Deb ^d, Taehyeong Ha ^e Khandker Saadat Hossain ^b, Muhammad Tofazzal Hossain ^a, Md. Abdul Kafi ^a*, Jeong-Woo Choi ^e*

^o Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh.

^b Department of Physics, University of Dhaka, Dhaka-1000, Bangladesh.

^c Experimental Physics Division, Atomic Energy Centre, Dhaka, Bangladesh

^d Department of Biotechnology, Bangladesh Livestock Research Institute, Savar, 1341, Dhaka, Bangladesh.

^e Department of Chemical and Biomolecular Engineering, Graduate School of Management of Technology, Sogang University ,35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, South Korea.

⁺Abdullah Rafsan and Aminur Rahman have equal contribution

*Corresponding Author

Md. Abdul Kafi Professor Department of Microbiology and Hygiene Bangladesh Agricultural University Mymensingh-2202 Cell no.: +8801717007975 Email: makafi2003@bau.edu.bd Web link: https://vmh.bau.edu.bd/pages/faculty Web link: https://vmh.bau.edu.bd/pages/faculty : https://www.researchgate.net/profile/Md_Abdul_Kafi : https://scholar.google.com/citations?user=dfdJCtQAAAAJ&hl=en

&

Prof. Jeong-Woo Choi, Ph.D. D.Eng. DBA Dean, College of Engineering Dean, Graduate School of Information & Technology Department of Chemical and Biomolecular Engineering, Graduate School of Management of Technology Sogang University ,35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, South Korea Tel: +82-2-705-8480, (Center) Tel:+82-2-705-7869, Fax: +82-2-3273-0331 e-mail: jwchoi@sogang.ac.kr, HP: http://nbel.sogang.ac.kr/

Master mixture (Go Taq [®] green, 2X):	12.5µl
Nuclease free water	5.5µl
Forward primer	1μΙ
Reversed primer	1μΙ
DND template	5μΙ

Table S1	Prenaration	of PCR	mixture	(251)
Table JT.	reparation		mixture	(ZJµI)

Thermal profile for the amplification: Thermal profiles used for determination of multidrug resistance gene-specific primers were given in the table below.

Name of the bacteria	Target gene	Thermal profile	Amplicon size	Reference
S. aureus	16s rRNA gene	Initial denaturation at 94°C for 5mins; followed by 30 cycles of denaturation at 94°C for 30secs, annealing at 52°C for 30secs and extension at 72°C for 30secs. The final extension was conducted at 72°C for 5mins.	228 bp	1
S. aureus	<i>mec</i> A gene	Initial denaturation at 94°C for 5mins; followed by 30 cycles of denaturation at 94°C for 30secs, annealing at 52°C for 30secs and extension at 72°C for 30secs. The final extension was conducted at 72°C for 5mins.	163 bp	2
E. coli	malB gene	Initial denaturation at 95°C for 5mins; followed by 30 cycles of denaturation at 94°C for 45secs, annealing at 55°C for 45secs and extension at 72°C for 1min. The final extension was conducted at 72°C for 5mins.	585 bp	3

Table S3. Thermal profile for the detection of antibiotic resistant gene for tetA and blaTEM-1

Target gene	Thermal profile	Amplicon size	Reference
<i>Bla TEM-1</i> gene	Initial denaturation at 95°C for 5mins; followed by 30 cycles of denaturation at 94°C for 45secs, annealing at 55°C for 45secs and extension at 72°C for 1min. The final extension was conducted at 72°C for 5mins.	643bp	4
<i>tetA</i> gene	Initial denaturation at 95°C for 5mins; followed by 30 cycles of denaturation at 94°C for 45secs, annealing at 55°C for 45secs and extension at 72°C for 1min. The final extension was conducted at 72°C for 5mins.	577bp	5

Table S4. List of antibiotics with their groups, generation, and sensitive (S) or resistant (R) to isolated bacteria

Group of antibiotics	Name of antibiotics	Generation	Name of the isolate	
			S. aureus	E. coli
Sulfonamides	Trimethoprim (COT-25)	NGC	R	R
Cephalosporin	Cefuroxime (CXM-30)	2 nd	R	R
	Cefotaxime (CTX30)	3 rd	S	R
	Cefixime (CFM-5)	3 rd	R	R
Oxazolidinone	Linezolid (LZ-30)	NGC	R	R
Aminoglycoside	Kanamycin (K-30)	NGC	S	S
Quinolones	Ciprofloxacin (CIP-5)	2 nd	S	S
	Levofloxacin (LE-5)	3 rd	S	S

Macrolides	Erythromycin (E-15)	NGC	R	R
Penicillin	Oxacillin (OX- 30)	2 nd	R	R
	Ampicillin (AMP-10)	3 rd	R	R
Lincosamides	Clindamycin (CD -2)	NGC	R	R

R= Resistant; S= Sensitive

Fig. S1 Determination of MDR pattern using 12 commercially available antibiotics of a) Staphylococcus aureus and, b) Escherichia coli

Fig. S2 Visual representation of antibacterial effect of CuONPs based on a) reducing agent concentration, b) concentration of ion source, and c) reduction periods, and respective differences in zone of inhibition size (d – f).

Fig. S3 Determination of MBC against MDR a) Staphylococcus aureus and, b) Escherichia coli

References

- 1 S. R. Monday and G. A. Bohach, *J. Clin. Microbiol.*, 1999, **37**, 3411–3414.
- 2 M. Mehrotra, G. Wang and W. M. Johnson, *J. Clin. Microbiol.*, 2000, **38**, 1032–1035.
- 3 X. Jiang, R. Wang, Y. Wang, X. Su, Y. Ying, J. Wang and Y. Li, *Biosens. Bioelectron.*, 2011, **29**, 23–28.
- 4 M. A. Saeed, A. Haque, A. Ali, M. Mohsin, S. Bashir and A. Tariq, J. Antibiot. (Tokyo)., 2009, 62, 319–323.
- 5 K. Hedayatianfard, M. Akhlaghi and H. Sharifiyazdi, *Vet. Res. Forum*, 2014, **5**, 269–275.