Supporting Information

A Controllable Surface Etching Strategy for MOF-Derived Porous

ZnCo₂O₄@ZnO/Co₃O₄ Oxides and Their Sensing Properties

Wang Li^{ab*}, Yulin Guo^a, Yan Liu^a, Wen Yang^a, Jiangwei Ma^{ab*}, Jifan Hu^{ab*}

^a College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan

030003, China

^b Laboratory of Magnetic and Electric Functional Materials and the applications, The Key Laboratory of

Shanxi Province, Taiyuan 030024, China

*Corresponding author

E-mail address: 2019014@tyust.edu.cn

Results

Fig. S1 TEM image of (A) $ZnCo_2O_4$, (B) $ZnCo_2O_4@ZnO/Co_3O_4-6h$.(inset: metal oxide particle size distribution composed of $ZnCo_2O_4$ and $ZnCo_2O_4@ZnO/Co_3O_4-6h$).

Fig. S2 Temperature dependent sensing results of $ZnCo_2O_4$ for 100 ppm ethanol, methanal, acetone, methanol, and ammonia at different temperatures from 100-300 °C.

Fig. S3 Temperature dependent sensing results of ZnCo₂O₄@ZnO/Co₃O₄-1h for 100 ppm ethanol, methanal, acetone, methanol, and ammonia at different temperatures from 100-300 °C.

Fig. S4 Temperature dependent sensing results of ZnCo₂O₄@ZnO/Co₃O₄-6h for 100 ppm ethanol, methanal, acetone, methanol, and ammonia at different temperatures from 100-300 °C.