Electronic Supporting Information:

Vibrational Spectroscopy as a Probe of Geochemical Thin Films and

Single Particle on Macro, Micro and Nanoscales

Deborah Kim, Samantha Townsley and Vicki H. Grassian*

Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA

92037

*Author to whom correspondence may be addressed. Email: <u>vhgrassian@ucsd.edu</u>

Electronic Supplementary Information Content: This Electronic Supplementary Information

(ESI) is 9 pages total with references. The ESI contains 4 figures and 7 tables.

Figure S1. Images and spectra recorded for different oxide minerals – corundum, anatase and silicon dioxide (amorphous) utilizing ATR-FTIR spectroscopy, O-PTIR and Raman spectroscopy and AFM-IR spectroscopy.

Figure S2. Images and spectra recorded for different carbonate and sulfate minerals – calcite, sodium sulfate and ammonium sulfate utilizing ATR-FTIR spectroscopy, O-PTIR and Raman spectroscopy and AFM-IR spectroscopy.

Figure S3. Images and spectra recorded for different aluminosilicates – montmorillonite and zeolite utilizing ATR-FTIR spectroscopy, O-PTIR and Raman spectroscopy and AFM-IR spectroscopy.

800 1600 2400 3200 4000 Wavenumber (cm⁻¹)

Figure S4. Raman spectrum for Arizona Test Dust (AZTD). As can be seen, fluorescence signal is observed.

Classes of Minerals Minerals		CAS #	Source
	α-FeOOH (Goethite)	20344-49-4	Alfa Aesar
	α -Al ₂ O ₃ (Corundum)	1344-28-1	Alfa Aesar
Oxides	TiO ₂ (A potoso)	12462 67 7	Nanostructured &
	ΠO_2 (Anatase)	13403-07-7	Amorphous Materials Inc.
	SiO ₂ (Amorphous)	7631-86-9	Aldrich Chemistry
	NaNO ₃	7631-99-4	Sigma Aldrich
Carbonates, Sulfates,	CaCO ₃ (Calcite)	471-34-1	Alfa Aesar
and Nitrates	Na_2SO_4	7757-82-6	Fisher Chemical
	$(NH_4)_2SO_4$	7783-20-2	Fisher Scientific
	Kaolinite	1318-74-7	Sigma-Aldrich
Clays and	Montmorillonito	SW4 2 *	The Clay Minerals
Aluminosilicates	Montmormonite	5 w y-2 ·	Society
	Zeolite (Type 13X)	1318-02-1	Sigma Aldrich
Complex Multi- component Samples	Arizona Test Dust	ISO 12103-1*	Powder Technology Inc.

Table S1. Summary of classes of minerals, minerals, CAS numbers and sources used.

*CAS # is not provided, so specific sample type is provided instead.

Table S2.	Vibrational	mode a	ssignments	of different	mineral	oxides	from	infrared	spectrosc	opy
utilizing A	ATR-FTIR, C)-PTIR,	and AFM-I	R spectrosco	opy.					

Samula		Assignment		
Sample	ATR-FTIR	<i>O-PTIR</i>	AFM-IR	Assignment
Corundum $(\alpha - Al_2O_3)^1$	820	816	818	Al-O stretch
Anatase (TiO ₂) ²	802	802	808	Ti-O stretch
Amomphaus SiO.3.4	814	824	822	Si-O stretch
Amorphous $S1O_2^{3,1}$	1084, 1220	1064, 1220	1086	Si-O-Si stretch

Table	S3.	Vibrational	mode	assignments	of	different	mineral	oxides	from	micro-Raman
spectro	scop	y.								

Sample	Wavenumber (cm ⁻¹) Raman	Assignment	
C_{α} and C_{α} (a) $(A_{1}, O_{1})^{5}$	3624	O-H stretch	
Corundum $(\alpha - AI_2O_3)^3$	3852		
	396	O-Ti-O bend	
Anatase (TiO ₂) ^{6–8}	519	Ti-O stretch	
	638	Ti-O bend	
Amorphous SiO ₂	Fluorescence signal observed	-	

Compound	, i i i i i i i i i i i i i i i i i i i				
Compound	ATR-FTIR O-PTIR AFM-IR		AFM-IR	Assignment	
	874	874	874	v ₂ , Out-of-plane bend	
Calcite (CaCO ₃) ^{9,10}	1432	1400, 1444, 1514	1424, 1458, 1504	v ₃ , Asymmetric stretch	
	1796	1796		Combination bands $(v_1 + v_4)$	
Sodium Sulfate ^{11,12}	997	992	990	υ_1 , SO ₄ ²⁻ stretch	
	1125, 1184	1130, 1171, 1188	1104, 1128, 1188	v ₃ , SO ₄ ²⁻ stretch	
Ammonium	1082, 1164	1090, 1170	1080, 1110, 1130, 1160	v ₃ , SO ₄ ²⁻ stretch	
Sulfate ^{13,14}	1412	1420	1416	$\upsilon_4, \mathrm{NH_4^+} \mathrm{stretch}$	
	3040, 3208	3206		$\upsilon_3, \mathrm{NH_4}^+$ stretch	

Table S4. Vibrational mode assignments of different carbonate and sulfates from infrared spectroscopy utilizing ATR-FTIR, O-PTIR, and AFM-IR spectroscopy.

 Table S5. Vibrational mode assignments of different carbonate and sulfates from micro-Raman spectroscopy.

Compound	Wavenumber (cm ⁻¹)	Assignment
Compound	Raman	Assignment
	714	υ ₄ , in-plane bend
	1090	υ ₁ , symmetric stretch
Calcite (CaCO ₃) ¹⁵	1440	υ ₃ , asymmetric stretch
	1758	Combination bands $(v_1 + v_4)$
	456	v_2 , SO ₄ ²⁻ stretch
Sodium Sulfata ^{16,17}	630	υ ₄ , SO ₄ ²⁻ stretch
Soululli Sullate	990	v_1 , SO ₄ ²⁻ stretch
	1126	υ ₃ , SO ₄ ²⁻ stretch
	446	v_2 , SO ₄ ²⁻ stretch
Ammonium	618	υ ₄ , SO ₄ ²⁻ stretch
Sulfate ^{13,16–19}	973	v_1 , SO ₄ ²⁻ stretch
	3143	N-H stretch

Compound	l i	Aggignmont		
Compound	ATR-FTIR O-PTIR AFM-IR		Assignment	
	870	874	868	Al-Fe-OH bend
Montmorillonite ²⁰	1024, 1056, 1110, 1176	1024, 1114	1056, 1062, 1108, 1176	Si-O stretch
	1626			O-H bend
	3628			O-H stretch
7 221it221	912, 963, 1062	912, 963, 983, 1062	912, 966, 1002, 1062	Al-O or Si-O asymmetric stretch
Zeome	1434	1412	1408	AlO ₄ tetrahedra
	1650	1630, 1650	1630, 1656	O-H bend
	3218	3130, 3218		O-H bend

Table S6. Vibrational mode assignments of different aluminosilicates from infrared spectroscopy utilizing ATR-FTIR, O-PTIR, and AFM-IR spectroscopy.

Table	S7.	Vibrational	mode	assignments	and	observation	of	fluorescence	for	different
alumin	osilic	ates and for a	AZTD							

Compound	Wavenumber (cm ⁻¹)	Assignment
Compound	Raman	Assignment
Montmorillonite	Fluorescence signal observed	-
	492	Al-O-Al or Si- O-Si stretch
	713	Si-O bend
Zeolite ^{21–24}	973	Al-O-Al stretch, SiO ₄ stretch
	1048	Al-O bend, Si-O bend
	1107	Si-O stretch
	3446	O-H stretch
Arizona Test Dust (AZTD)	Fluorescence signal observed	_

References.

- 1 B. Ludwig and T. T. Burke, *Powders*, 2022, **1**, 47–61.
- 2 M. Al-Amin, S. Chandra Dey, T. U. Rashid, M. Ashaduzzaman and S. M. Shamsuddin, *Int. J. Latest Res. Engineering and Tech.*, 2016, **2**, 14–21.
- L. A. Zemnukhova, A. E. Panasenko, A. P. Artem'yanov and E. A. Tsoy, *Bioresources*, 2015, **10**, 3713–3723.
- 4 M. Ocaiñia, V. Forniés and C. J. Serna, J. Non-Cryst. Sol., 1989, 107, 187-192.
- 5 S. V. Goryainov, A. S. Krylov, O. P. Polyansky and A. N. Vtyurin, *J. of Raman Spec.*, 2017, **48**, 1431–1437.
- 6 O. Frank, M. Zukalova, B. Laskova, J. Kürti, J. Koltai and L. Kavan, *Phys. Chem. Chemical Physics*, 2012, **14**, 14567–14572.
- 7 T. Ohsaka and Y. Fujiki, J. Ram. Spec. 1978, 7, 321-324.
- 8 Y. Hu, H.-L. Tsai and C.-L. Huang, J. Euro. Ceram. Soc. 2003, 23, 691-696.
- 9 H. A. Al-Hosney and V. H. Grassian, *Phys. Chem. Chemical Physics*, 2005, 7, 1266–1276.
- 10 H. A. Al-Abadleh, H. A. Al-Hosney and V. H. Grassian, in *J. of Mol. Catalysis A: Chem.*, 2005, **228**, 47–54.
- 11 D. Peak, R. G. Ford and D. L. Sparks, J. Colloid Int. Sci., 1999, 218, 289–299.
- 12 X. Wang, Z. Wang, D. Peak, Y. Tang, X. Feng and M. Zhu, *ACS Earth Space Chem.*, 2018, **2**, 387–398.
- 13 A. L. Bondy, R. M. Kirpes, R. L. Merzel, K. A. Pratt, M. M. Banaszak Holl and A. P. Ault, *Anal. Chem.*, 2017, **89**, 8594–8598.
- 14 M. C. Yeung, A. K. Y. Lee and C. K. Chan, *Aerosol Sci. and Tech.*, 2009, **43**, 387–399.
- 15 S. Gunasekaran, G. Anbalagan and S. Pandi, J. of Raman Spec., 2006, 37, 892–899.
- 16 M. Jariwala, J. Crawford and D. J. LeCaptain, Ind. Eng. Chem. Res., 2007, 46, 4900– 4905.
- 17 J. Qiu, X. Li and X. Qi, J. IEEE Photonics 2019, 11, 1-13.
- 18 J. D. Rindelaub, R. L. Craig, L. Nandy, A. L. Bondy, C. S. Dutcher, P. B. Shepson and A. P. Ault, *J. of Phys. Chem. A*, 2016, **120**, 911–917.
- 19 M. N. Chan, A. K. Y. Lee and C. K. Chan, *Environ. Sci. Technol.*, 2006, 40, 6983–6989.

- 20 H. A. Patel, R. S. Somani, H. C. Bajaj and R. V. Jasra, *Bulletin of Materials Sci.*, 2006, **29**, 133–145.
- 21 K. Byrappa and B. V Suresh Kumar, Asian J. Chem. 2007, 19, 4933-4935.
- M. Ritz, L. Vaculíková, J. Kupková, E. Plevová and L. Bartoňová, *Vib. Spectrosc.*, 2016, 84, 7–15.
- 23 A. C. Gujar, A. A. Moye, P. A. Coghill, D. C. Teeters, K. P. Roberts and G. L. Price, *Microporous and Mesoporous Mat.*, 2005, **78**, 131–137.
- 24 Y. L. Tsai, E. Huang, Y. H. Li, H. T. Hung, J. H. Jiang, T. C. Liu, J. N. Fang and H. F. Chen, *Minerals*, 2021, **11**, 1–14.