Supporting Information

Atomic Layer Deposition of Y₂O₃ Films Using Novel Liquid Homoleptic Yttrium Precursor Tris(secbutylcyclopentadienyl)yttrium [Y(^sBuCp)₃] and Water

Akihiro Nishida,*,^{†,‡} Tsukasa Katayama,^{§,††} and Yasutaka Matsuo*,[§]

[†] Graduate School of Chemical Sciences and Engineering, Hokkaido University, N13W8, Kita-

ku, Sapporo 060-8628, Japan.

[‡] Semiconductor Materials Department, Electronic Materials Development Laboratory, ADEKA

CORPORATION, 7-2-34 Higashiogu, Arakawa-ku, Tokyo 116-8553, Japan

§ Research Institute for Electronic Science (RIES), Hokkaido University, N21W10, Sapporo 001-0021, Japan.

^{††} JST-PRESTO, Kawaguchi, Saitama 332-0012, Japan.

*Corresponding authors; E-mails: nishida.akihiro.y9@elms.hokudai.ac.jp; a.nishida@adeka.co.jp

Supplementary Figures

Long-term thermal stability data of Y(^sBuCp)₃ precursor

Figure S1 shows TGA curves recorded during the long-term thermal stability test. The $Y(^{s}BuCp)_{3}$ was heated at 190 °C, which is the temperature at which it vaporizes at 1 Torr, and periodically characterized by TGA and ¹H-NMR. The results show very clean TG curves before and after the sample was heated at 190 °C for 18 weeks.

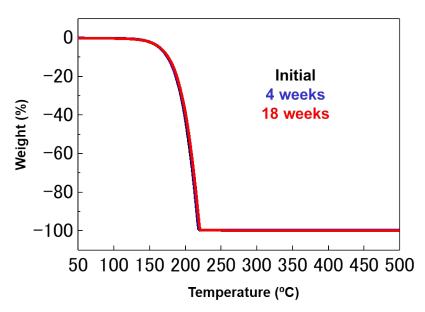


Fig. S1 TGA curves recorded during long-term thermal stability test of Y(^sBuCp)₃ at 190 °C for 18 weeks.

Figure S2 presents ¹H-NMR spectra acquired during the long-term thermal stability test. The spectrum of $Y(^{8}BuCp)_{3}$ did not change before or after it was heated at 190 °C for 18 weeks. Therefore, $Y(^{8}BuCp)_{3}$ was confirmed to exhibit excellent long-term thermal stability for at least 18 weeks.

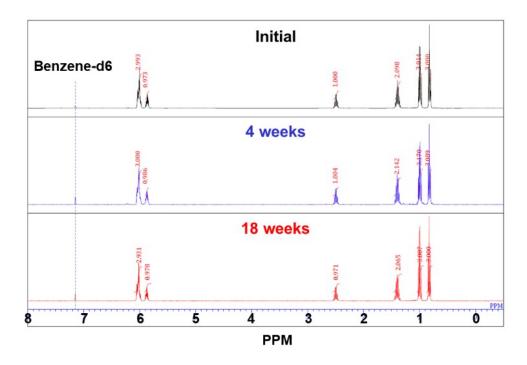


Fig. S2 ¹H-NMR spectra of Y(${}^{s}BuCp$)₃ acquired during long-term thermal stability test at 190 °C for 18 weeks.