Supporting Information for

Design and synthesis of Unnatural Coordination Glycopolymer Particles (CGPs): unleashing the potential of catechol-saccharide derivatives.

Celina Bideplán-Moyano, Marcos J. Lo Fiego, Juan José Calmels, Belén Alonso, Gabriel Radivoy, Daniel Ruiz-Molina, Juan Mancebo-Aracil* and Fabiana Nador*

Index

S1. Secondary products obtained after methanolysis	2
S2. UV-Vis of compound 4a	3
S3. IR spectra	3
S4. SEM and EDX of CGPs	4
S5. DLS and Zeta Potential of CGPs samples in different conditions	5
S6. Characterization of compounds 1	7
S7. Characterization of compounds 2	9
S8. Characterization of compounds 3	. 17
S9. Characterization of compounds 4	. 20

S1. Secondary products obtained after methanolysis

Figure S1. Secondary products obtained after methanolysis under K₂CO₃/MeOH conditions.

Figure S2. Comparison of ¹H NMR of **3b** and secondary products obtained after methanolysis.

S2. UV-Vis of compound 4a

Figure S3. UV-Vis spectra of compound 4a were obtained in the same medium used for the preparation of CGPs, but in the absence of Fe(III), after 24 hours.

Figure S4. Full IR spectra (KBr) of ligand 4a and CGPs.

Figure S5. IR spectra (KBr) of ligand 4a and CGPs in the 400-800 cm⁻¹ region.

S4. SEM and EDX of CGPs

Figure S6. SEM images of CGPs and size distribution histogram.

- s			Snectra	m 10
			Wt	% а
				0.4
				0 0.3
				0.1
				0.1
<u> </u>				d by Tru-Q ©
				l i
:				
³⁰ —				
				l i
ğ -				/
: I				/
20- C				1
E Y I				1
I I I I I I I I I I I I I I I I I I I				/
I I I I I I I I I I I I I I I I I I I				/
I I I I I I I I I I I I I I I I I I I				/
10-				/
E FIN E	Fe			
	ΥΫ́			
	Lee .			
0-,		 		mmn.
				keV

Figure S7. EDX spectrum of CGPs.

S5. DLS and Zeta Potential of CGPs samples in different conditions

Figure S8. CGPs solutions in EtOH, AcOEt, DMSO, H₂O and PBS buffer (pH ~ 7,4).

PDI = 0,131 - 0,283 Z average (nm) 10 12 14 16 18 20 22 24 26 Conc. (mg/ μ L).10²

Figure S9. Figure S9. DLS measurements (represented as Z-average mean size) of different concentrations of CGPs/DMSO solutions in H_2O . Standard deviation values are indicated below each data point.

Figure S10. a) DLS measurements (represented as Z-average mean size) of different concentrations of CGPs/DMSO solutions in PBS buffer (pH ~ 7.4); b) A comparison depicting the Z-average mean size of distinct concentrations of CGPs/DMSO in both H₂O and PBS buffer solutions; c) The same graph as in b), illustrating an upward extension on the y-axis from 40 to 56 nm, highlighting the standard deviation values for each measurement and the PDI range; d) The identical graph as in b), displaying an upward extension on the y-axis from 40 to 110 nm, accentuating the standard deviation values for each measurement and the PDI range.

Figure S11. DLS (represented in Z average) of different concentrations of CGPs/DMSO solutions in H_2O at t = 0 h, t = 72 h and t = 168 h.

S6. Characterization of compounds 1

Figure S12. ¹H NMR of 1a in CDCl₃

Figure S13. ¹³C NMR of 1a in CDCl₃

Figure S14. ¹H NMR of 1b in CDCl₃

9

Figure S16. HSQC of 1b in CDCl₃

S7. Characterization of compounds 2

Figure S17. ¹H NMR of 2a in CDCl₃

Figure S18. ¹³C NMR of 2a in CDCl₃

Figure S19. HSQC of 2a in CDCl₃

Figure S20. ¹H NMR of 2b in CDCl₃

Figure S21. ¹³C NMR of 2b in CDCl₃

Figure S22. HSQC of 2b in CDCl₃

Figure S23. ¹H NMR of 2c in CDCl₃

Figure S24. ¹³C NMR of 2c in CDCl₃

Figure S25. HSQC of 2c in CDCl₃

Figure S26. ¹H NMR of 2d in CDCl₃

Figure S27. ¹³C NMR of 2d in CDCl₃

Figure S28. HSQC of 2d in CDCl₃

Figure S29. ¹H NMR of 2e in CDCl₃

Figure S30. ¹³C NMR of 2e in CDCl₃

Figure S31. ¹H NMR of 2f in CDCl₃

Figure S32. ¹³C NMR of 2f in CDCl₃

S8. Characterization of compounds 3

Figure S33. ¹H NMR of 3a in CD₃OD

Figure S34. ¹³C NMR of 3a in CD₃OD

Figure S36. ¹H NMR of **3b** in CD₃OD

Figure S37. ¹³C NMR of 3b in CD₃OD

S9. Characterization of compounds 4

Figure S38. ¹H NMR of 4a in CDCl₃

Figure S39. ¹³C NMR of 4a in CDCl₃