Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Table of Contents Entry

Construction of thickness-controllable bimetallic sulfides/reduced graphene oxide as a binder-free positive electrode for hybride supercapacitors

Ramage M. Ghanem^a, Doaa A. Kospa^a, Awad I. Ahmed^a, Amr Awad Ibrahim^{a*}, Ahmed Gebreil^b

^aDepartment of Chemistry, Faculty of Science, Mansoura University, Al-Mansoura 35516, Egypt. ^b Nile Higher Institutes of Engineering and Technology, El-Mansoura, Egypt.

Fig. S1: SEM images of NiCuS/5rGO/NF deposited at controllable CV cycles.

Fig. S2: FT-IR spectra of the as-synthesized materials.

Fig. S3: CV of NiCuS/5rGO and NiCuS/50rGO (5 cycles) and NiCuS/50rGO (20 cycles) at scan rate 5mV/s.

Fig. S4: The CV curves of (a) NiS, (b) CuS, (c) NiCuS, (d) NiCuS/5rGO, (e) NiCuS/50rGO (5 cycles), and (f) NiCuS/50rGO (20 cycles) electrodes in the range of 0.0V-0.5V at different scan rates.

Determination of Electrochemically Active Surface Area (ECSA) of electrocatalysts

The electrical double layer (EDL) capacitance was used to assess the ECSA of the deposition electrodes. In a limited potential window, all electrode CV curves at various scan rates were recorded, as illustrated in S4. The capacitive current (i_c) should be in direct proportion to the scan rate (v): ¹

$$i_c = vC_{EDL} \tag{1}$$

where C_{EDL} represents EDL capacitance. Assuming the areal EDL capacitance of carbon (C*) is 13 μ F/cm² as reported by Ji et al.

To calculate the ECSA, the following equation was applied:

$$ECSA = C_{EDL}/C^*$$
 (2)

Fig. S5: Capacitive current- scan rate plot of all catalysts.

Material	Synthesis	Electrolyte	Capacitance	Condition	Retention	No. of Cycle	Ref.
NiCu ₂ S ₂ /NF	Cathodic vacuum arc technique	2 M KOH	1975.2 C/g	0.5 mA/cm ²	76.8% at 10 mA/cm ²	3000	2
NiCu/NF	Cathodic vacuum arc technique	2 M KOH	739.6 C/g	0.5 mA/cm ²	48.3% at 10 mA/cm ²	3000	2
Ni _{0.8} Cu _{0.2} S/CC	Hydrothermal	2 M KOH	938.6 F/g	1 A/g	69 % at 2 A/g	10000	3
NiCuS/NF	Hydrothermal	3 M KOH	2.14 F/cm ²	1mA/cm ²	72.2% at 50 mA/cm ²	10000	4
NiCoS/GO/NF	situ chemical transformation	6 M KOH	1492 F/g	1 A/g	96% at 6 A/g	8000	5
CuMnS//AC	electrodeposition	1 M KOH	1691 F/g	10 A/g	94% at 20 A/g	2500	6
Annealed-Co ₃ O ₄	Electrodepostion	1 M KOH	621F/g	5 mA/cm ²	91.4% at 5 mA/g	4000	7
2D- ZnS/FeS @carbon cloth (CC)	Hydrothermal	6 M KOH	1367.5 F/g	3 A/g	87% at 15 A/g	5000	8
CoS ₂ -rGO//N-CNT	Hydrothermal	1 M KOH	1417 F/g	2 A/g	92% at 10 A/g	5000	9
NiMn ₂ O ₄ @CoS// SCG	electrodeposition	1 M KOH	1727 F/g	1 A/g	94 % at 10 A/g	5000	10
CuS-NHS (nano hollow sphere)	hydrothermal method	6 M KOH	948 F/g	1 A/g	90.9% at 2 A/g	1000	11
NiS/GO	hydrothermal method	2 M KOH	905.3 F/g	0.5 A/g	90.9% at 4 A/g	2000	12
CuS Nanorods	hydrothermal method	6 M KOH	179 F/g	1 A/g	41% at 2 A/g	1000	11
NiCuS/50rGO//AC	Electrodeposition	1 М КОН	920.1 C/g	1 A/g	96.2% at 10 A/g	10000	This work

Table. S1: Comparison of previous reports on metal sulfides for supercapacitors with the

fabricated NiCuS/rGO.

Figure S6: Comparison of the GCD curves of NiCuS/5rGO (5 cycles), and NiCuS/50rGO (5 and 20cycles).

Figure S7: GCD curves of (a) NiS, (b) CuS, (c) NiCuS, (d) NiCuS/5rGO, (e) NiCuS/50rGO (5 cycles), and (f) NiCuS/50rGO (20 cycles) at different current densities.

Fig. S8: (a) CV plots of diffusion/ capacitive-controlled contributions at 5mV/s and (b) the ratio of diffusion/ capacitive-controlled contributions as a function of scan rate for NiCuS/50rGO (20 cycles).

Fig. S9: The relationship between the log (i) and the log(v) of NiCuS/50rGO (50 cycles).

Fig. S10: Cycling stability comparison of NiS and CuS electrodes at 20 A/g.

Fig. S11: GCD stability test for (a) NiCuS and (b) NiCuS/50 rGO (5 cycles) for 5000 cycles at 20 A/g current density.

Fig. S12: Nyquist plots of NiCuS/50rGO/NF//AC device from 0.1 Hz to 100 kHz in 0.1 KOH. (a), Bode plots (b), and the real (c) and imaginary (d) capacitances of device versus frequency.

References

- 1. F. Zhang, H. Liu, Z. Wu, J. Zhang, E. Cui, L. Yue and G. Hou, *ACS Appl. Energy Mater.*, 2021, **4**, 6719-6729.
- 2. Y. Cheng, M. Zhai and J. Hu, *Appl Surf Sci*, 2019, **480**, 505-513.
- 3. D. Du, R. Lan, J. Humphreys, H. Amari and S. Tao, *Electrochim Acta*, 2018, **273**, 170-180.
- 4. X. Xun, H. Liu, Y. Su, J. Zhang, J. Niu, H. Zhao, G. Zhao, Y. Liu and G. Li, *J Solid State Chem*, 2019, **275**, 95-102.
- 5. J. Yang, C. Yu, X. Fan, S. Liang, S. Li, H. Huang, Z. Ling, C. Hao and J. Qiu, *Energy Environ. Sci.*, 2016, **9**, 1299-1307.
- 6. M. Z. Iqbal, S. Zakar, S. S. Haider, A. M. Afzal, M. J. Iqbal, M. A. Kamran and A. Numan, *Ceramics International*, 2020, **46**, 21343-21350.
- 7. M. Kalyani and R. N. Emerson, *J Mater Sci: Mater Electron*, 2019, **30**, 1214-1226.
- 8. M. S. Javed, T. Najam, M. Sajjad, S. S. A. Shah, I. Hussain, M. Idrees, M. Imran, M. A. Assiri and S. H. Siyal, *Energy Fuels*, 2021, **35**, 15185-15191.
- 9. B. Hu, H. Li, A. Liu, C. Yue, Z. Guo, J. Mu, X. Zhang and H. Che, ACS Appl. Energy Mater., 2021, **4**, 88-97.
- 10. N. Hu, L. Huang, W. Gong and P. K. Shen, ACS Sustain Chem Eng, 2018, 6, 16933-16940.
- 11. H. Heydari, S. E. Moosavifard, S. Elyasi and M. Shahraki, *Appl Surf Sci*, 2017, **394**, 425-430.
- 12. J. Yang, X. Duan, W. Guo, D. Li, H. Zhang and W. Zheng, *Nano Energy*, 2014, **5**, 74-81.