SUPPLEMENTARY INFORMATION

From Doping to Composites: Zirconia (ZrO₂) Modified Hematite Photoanodes for Water Splitting

Saima Qureshi,^{a,b,} Duncan Gregory,^b Asif Ali Tahir,^c Safeer Ahmed.^{a, *}

Fig S1(a) XRD line pattern for hematite as taken from the JCPDS (00-024-0072) ,experimental XRD patterns taken for a sample of pristine hematite and a sample of 30 wt.% zirconia/hematite deposited on FTO, respectively.

		Element	Wt%	Atomic%	ThAt%
		Zr L	29.06	11.12	12.5
		ОК	28.67	26.34	25.0
	ſ	Fe K	42.26	62.54	62.5

Fig. S2. EDX spectrum for a sample of 30 wt% zirconia added hematite. The corresponding quantitative analysis is provided in the inset table.

Roughness (Ra): 6.076 nm

Root mean square roughness (RMS): 7.641nm

Fig.S3. AFM images of ZrO_2/α -Fe₂O₃ (a) 2D and (b) 3D showing topography of the films and an estimation of the surface roughness.

Table S1. Average crystallite size, from XRD data using Scherrer formula, of	Zirconia
added- α -Fe ₂ O ₃ films prepared by AACVD method.	

Amount of added ZrO ₂ / wt.%	Crystallite size / nm
2	7
5	13
10	17
20	42
30	14
40	11

Table S2 Direct optical band gaps of zirconia added hematite as a function of compositionas calculated from analysis of DR-UV-VIS data from K-M plots

Amount of added zirconia/wt%	Band gap/eV
0 (pure Fe ₂ O ₃)	2.03
2	2.02
5	1.99
10	1.85
20	2.07
30	2.14
40	1.96
100 (<i>m</i> - ZrO ₂)	3.6

Table S3.% IPCE vs wave length and potential of 30% zirconia added hematite.

Photoanode	% IPCE vs. Wavelength	% IPCE vs. Potential
Hematite	18%@265 nm 18%@285 nm	<u>0.53%@0.23 V</u>
30 wt.% ZrO ₂ /Fe ₂ O ₃	48% @ 265 nm 58%@ 285 nm	<u>11%@0.23 V</u>

Table S4. Photocurrents and onset potentials (E_{onset}) for ZrO_2 /hematite as a function of composition.

Amount of added ZrO ₂ / wt.%	E _{onset} / V	Photocurrent density mA/cm ²	
		@1.23V	
0	0.86	1.23	
2	0.95	0.21	
5	0.78	0.48	
10	0.78	0.63	
20	0.74	2.12	
30	0.73	3.06	
40	1.06	1.03	

Amount of added ZrO ₂ / wt.%	Electron lifetime / ms
0	0.175
30	1.690

Table S5. Electron lifetimes for hematite as compared to 30 wt.% zirconia/hematite

 Table S6. Amounts of hydrogen and oxygen evolved (as determined by GC) as a function of time for pristine hematite and 30 wt.% zirconia/hematite

Time / h	H ₂ (evolved / µmol cm ⁻²	O ₂ evolved / µmol cm ⁻²		
	α-Fe ₂ O ₃	$30 \text{ wt.}\% \text{ ZrO}_2/\alpha\text{-Fe}_2\text{O}_3$	α-Fe ₂ O ₃	$30 \text{ wt.} \% \text{ ZrO}_2/\alpha\text{-Fe}_2\text{O}_3$	
1	0	0.27	0.721	4.49	
2	0.45	0.47	0.956	5.16	
3	0.121	0.69	0.977	6.78	
4	0.215	0.74	1.063	7.89	
5	0.328	0.94	1.174	9.39	
6	0.402	1.02	1.23	11.04	