Supporting Information for

Enhanced Sensing Performance of Carbaryl Pesticide by empolying MnO₂/GO/e-Ag-based Nanoplatform: Role of Graphene Oxide as Adsorbing Agent on SERS Analytical Performance

Dao Thi Nguyet Nga^{a,1}, Quan Doan Mai^{a,1}, Ha Anh Nguyen^{a,1}, Nguyen Le Nhat Trang^a,

Pham Minh Khanh^a, Nguyen Quang Hoa^b, Vu Dinh Lam^c, Van-Tuan Hoang^{a,*},

Anh-Tuan Le^{a,d}

^aPhenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam ^bFaculty of Physics, VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam

^cInstitute of Materials Science (IMS) and Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000, Vietnam

^dFaculty of Materials Science and Engineering (MSE), Phenikaa University, Hanoi 12116, Vietnam

Corresponding authors:

*tuan.hoangvan@phenikaa-uni.edu.vn (H.V. Tuan)

¹ D.T.N. Nga, M.Q. Doan and N.H. Anh contributed equally to this work

Calculation of limit of detection (LOD)

The standard curve of linear detecting range was given as:

$$Y = A + B \times Log(X) \tag{1}$$

where A and B are intercept and slope of regression equation obtained through the plot of the logarithmic SERS intensity (Y) – logarithmic concentration (X).

The LOD is calculated using the following equation ¹:

$$LOD = 10^{[(Y_{blank} + 3SD)/Y_{blank} - A]/B}$$
(2)

where Y_{blank} and SD are the SERS signal and the standard deviation of blank sample, respectively.

SD is calculated via the well-known formula:

$$SD = \sqrt{\frac{1}{n-1} \times \sum_{i}^{n} (x_i - x_{average})^2}$$
(3)

where x_i if the "i" sample of the series of measurements, $x_{average}$ is the average value of SERS signal obtained from the blank sample repeated n times.

Calculation of relative standard deviation (RSD)

The RSD value of repeatability and reproducibility is calculated via the well-known formula:

$$RSD = \frac{SD \times 100}{x_{average}}$$
(4)

where SD is the standard deviation that calculates using equation 4 and $x_{average}$ is the average value of SERS signal obtained from each measurement.

Calculation of enhancement factor (EF)

The EF value is calculated according to the well-established equation, which was employed in several published studies ^{2, 3}:

$$EF = \frac{I_{SERS}}{I_{Raman}} \times \frac{N_{bulk}}{N_{surface}}$$
(5)

where I_{SERS} and I_{Raman} are Raman signal intensity of the analyte with and without SERS from the substrate, respectively; and N_{bulk} is the number of analyte molecules that are probed on the Raman spectrum, while $N_{surface}$ is the number of analyte molecules probed using SERS.

N_{bulk} can be calculated following:

$$N_{bulk} = \frac{A_{laser} \times h \times \rho}{M} \times N_A$$

where A_{laser} , h, ρ and m are the laser spot area, the focal length, the density of the solid analyte and its molecular weight, respectively; and N_A is the Avogadro number.

N_{surface} can be expressed as:

$$N_{surface} = \frac{C \times V}{A_{substrate}} \times N_A \times A_{laser}$$
(7)

where C, V, $A_{substrate}$ are the concentration, the volume drop-casted of the analyte, and the area of the substrate, respectively; N_A is the Avogadro number; and A_{laser} is the laser spot area.

Thus, EF can be calculated as:

$$EF = \frac{I_{SERS}}{I_{Raman}} \times \frac{N_{bulk}}{N_{surface}} = \frac{I_{SERS}}{I_{Raman}} \times \frac{h \times \rho \times A_{substrate}}{M \times C \times V}$$

(8)

In our case, I_{SERS} and I_{Raman} is Raman signal intensity with and without SERS substrate of Carbaryl (480 cm⁻¹), h = 2 μ m = 2 × 10⁻⁴ cm, ρ = 1.2 g/cm³, M = 201.22 g/mol, A_{substrate} = 4 π mm² = 4 π × 10⁻² cm², C = 10⁻⁷ mol/L, V = 5 μ L = 5 × 10⁻⁶ L.

 I_{SERS} and I_{Raman} values of e-AgNPs and MnO₂/GO 0.1%/e-Ag were estimated using the spectra in Figure S5.

Figure S1: (a) SERS spectra of CBR (10⁻³ M) on e-AgNPs, MnO_2/e -Ag, GO/e-Ag, and MnO_2/e -Ag nanocomposites. (b) SERS intensities of MB (10⁻⁵ M) at 480 cm⁻¹, 1437 cm⁻¹, and 1576 cm⁻¹ on e-AgNPs, MnO_2/e -Ag, GO/e-Ag, and MnO_2/e -Ag nanocomposites.

Figure S2: SERS intensities of (a) CBR (10^{-3} M), (b) CAP (10^{-3} M), and (c) 4-NP (10^{-3} M) at characteristic peaks on MnO_2/e -Ag, and $MnO_2/GO 0.1$ wt%/e-Ag nanocomposites.

Figure S3: Raman spectrum of Carbaryl.

Figure S4: SERS spectra of the mixture of Carbaryl, 4-Nitrophenol, and Glyphosate (10^{-4} $M - 10^{-6}$ M) in the real sample of the cucumber on the MnO₂/GO 0.01 wt%/e-Ag substrate.

Figure S5: Raman of CBR; and SERS spectrum of e-Ag and $MnO_2/GO \ 0.1$ wt%/e-Ag for CBR (10⁻⁷M).

Figure S6: SEM images of MnO_2/GO with GO contents of (a) 0.1 wt% (to become 0.4 wt% in $MnO_2/GO/e$ -Ag) and (b) 0.5 wt% (to become 2.0 wt% in $MnO_2/GO/e$ -Ag).

	Group 1		Group 2		
	TCZ	МВ	CBR	САР	4-NP
Molecular structure	CH ₃	H ₃ C _N CH ₃ CH ₃ H ₃ C _N CH ₃ CH ₃	O NH		HO NO2
Vibrational band	(1) 431 cm ⁻¹ : C-N-C	(1) 453 cm ⁻¹ : C–N–C	(1) 480 cm ⁻¹ : C–C	(1) 1108 cm ⁻¹ : Ring in-	(1) 1109 cm ⁻¹ : C-H ip
	deformation vibration	skeletal deformation	bending mode	plane bending	bend
	(2) 595 cm ⁻¹ : C-S-C	mode	(2) 1437 cm ⁻¹ : C–H	(2) 1348 cm ⁻¹ : N– O_2	(2) 1330 cm ⁻¹ : NO ₂
	deformation vibration	(2) 1397 cm ⁻¹ : C–N	wagging mode	symmetric stretching	symmetric
	(3) 1372 cm ⁻¹ : C-N	symmetrical	(3) 1576 cm ⁻¹ : C=C	(3) 1596 cm ⁻¹ : Ring	stretching
	stretching vibration	stretching	stretching mode in	stretching	(3) 1575 cm ⁻¹ : Ring
		(3) 1622 cm ⁻¹ : C–C ring	naphthalene ring		stretch
		stretching			

Table S1: Molecular structure and assignments of vibrational bands in Raman and SERS spectra of some chemicals.

Table S2: The recovery values for four concentrations of CBR in the tap-water andcucumber samples.

Real sample	Analyte	Concentration of CBR (M)	Recovery (%)	RSD (%)
	CBR	10-4	106.98	9.70
Tara avertar		10-5	95.47	11.18
Tap-water		10-6	89.44	11.03
		10-7	84.65	13.46
	CBR	10-4	111.64	13.57
Cusuration		10-5	98.23	12.27
Cucumber		10-6	93.12	7.42
		10-7	87.61	9.34

Table S3: The recovery values for three concentrations of CBR in the cucumber samples containing extra-two pesticides (4-nitrophenol and glyphosate).

Real sample	Analyte	Concentration of CBR (M)	Recovery (%)	RSD (%)
	CBR	10-4	109.86	11.54
Cucumber		10-5	93.75	14.52
		10-6	98.39	13.49

References

- Chen, R.; Shi, H.; Meng, X.; Su, Y.; Wang, H.; He, Y. Dual-Amplification Strategy-Based SERS Chip for Sensitive and Reproducible Detection of DNA Methyltransferase Activity in Human Serum. *Anal. Chem.* 2019, *91* (5), 3597–3603. https://doi.org/10.1021/acs.analchem.8b05595.
- (2) Le Ru, E.C.; Blackie, E.; Meyer, M.; Etchegoin, P.G. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. *J. Phys. Chem. C*, 2007, 111, 33, 13794-13803. https://doi.org/10.1021/jp0687908.
- (3) Fu, W. L.; Zhen, S. J.; Huang, C. Z; One-pot green synthesis of graphene oxide/gold nanocomposites as SERS substrates for malachite green detection. *Analyst*, 2013, 138, 3075-3081. https://doi.org/10.1039/C3AN00018D.