Supplementary Figure



Fig.S1 <sup>1</sup>H-NMR (A), <sup>13</sup>C-NMR (B), <sup>1</sup>H-<sup>1</sup>H COSY (C), HSQC (D) and HMBC (E) spectra of RGP70-1-2.

Supplementary Tables

| Table S1 | The chromat | tographic  | conditions   | of HPLC |
|----------|-------------|------------|--------------|---------|
| 14010 01 |             | 10 Stupine | contantionis |         |

| -1                     | Agilent ZORBAX Eclipse XDB-C18 (5 $\mu$ m, 4.6 $\times$ 250 |
|------------------------|-------------------------------------------------------------|
| chromatographic column | mm)                                                         |
| mahila nhasa           | water-acetonitrile-phosphate buffer solution (0.05 M,       |
| moone phase            | рН 6.72)                                                    |
| flow rate              | 1 mL/min                                                    |
| Injection volume       | 10 µM                                                       |
| detection wavelength   | 250 nm                                                      |

Table S2 The program of HPLC gradient elution

| Time/min | Water/% | Acetonitrile/% | phosphate buffer solution/% |
|----------|---------|----------------|-----------------------------|
| 0        | -       | 17             | 83                          |
| 24       | -       | 17             | 83                          |
| 25       | -       | 19             | 81                          |
| 30       | -       | 18             | 82                          |
| 31       | 5       | 14             | 81                          |
| 32       | 5       | 14             | 81                          |
| 33       | -       | 18             | 82                          |
| 34       | 5       | 14             | 81                          |
| 36       | -       | 18             | 82                          |

Table S3 Infrared Spectral Characteristic Absorption Peaks of RGP70-1-1 and RGP70-1-2

| Wave number(cm <sup>-1</sup> ) | Functional group                   |
|--------------------------------|------------------------------------|
| 3410                           | O-H <sup>1</sup>                   |
| 2933                           | C-H <sup>2</sup>                   |
| 1693                           | $C-C^3$                            |
| 1421                           | C-H <sup>3</sup>                   |
| 1264, 1241                     | $C-O^4$                            |
| 1067, 1027, 1064               | C-O-C of sugar ring and Glycosidic |
|                                | bond <sup>5</sup>                  |
| 875                            | α-glycosidic bond <sup>5</sup>     |
| 807, 805                       | C-H of the furan ring <sup>6</sup> |
| 613                            | O-H <sup>6</sup>                   |

| Tuble 54 The results of methylation analysis of ROI 70 T | Table S4 The results | of methylation | analysis of R | RGP70-1-1 |
|----------------------------------------------------------|----------------------|----------------|---------------|-----------|
|----------------------------------------------------------|----------------------|----------------|---------------|-----------|

| Retentio |      | Type of | Mass fragmants(m/z) | Molar  |
|----------|------|---------|---------------------|--------|
| n time   | rmaa | linkage | wass magments(m/z)  | ratios |

| 12.33 | 1,4-di- <i>O</i> -acetyl-<br>2,3,5-tri- <i>O</i> -methyl-<br>L-arabinitol     | L-Ara <i>f</i> -(1→                                     | 43, 59, 71, 87, 101,<br>117, 129, 145, 161                             | 6.2 |
|-------|-------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------|-----|
| 14.41 | 1,3,4-tri- <i>O</i> -acetyl-<br>2,5-di- <i>O</i> -methyl-L-<br>arabinitol     | $\rightarrow$ 3)-L-Araf-<br>(1 $\rightarrow$            | 43, 58, 71, 87, 99, 117,<br>129, 147, 159, 173,<br>201, 233            | 1.4 |
| 15.13 | 1,4,5-tri- <i>O</i> -acetyl-<br>2,3-di- <i>O</i> -methyl-L-<br>arabinitol     | $\rightarrow$ 5)-L-Araf-<br>(1 $\rightarrow$            | 43, 58, 71, 87, 101,<br>117, 129, 161, 173, 189                        | 2.3 |
| 15.93 | 1,5-di- <i>O</i> -acetyl-<br>2,3,4,6-tetra- <i>O</i> -<br>methyl-D-mannitol   | D-Man <i>p</i> -(1→                                     | 43, 59, 71, 87, 101,<br>113, 117, 129, 145,<br>157, 161, 173, 189, 205 | 2.3 |
| 16.49 | 1,5-di- <i>O</i> -acetyl-<br>2,3,4,6-tetra- <i>O</i> -<br>methyl-D-galactitol | D-Gal $p$ -(1 $\rightarrow$                             | 43, 59, 71, 87, 101,<br>117, 129, 145, 157,<br>161, 173, 189, 205      | 3.3 |
| 16.90 | 1,3,4,5-tetra- <i>O</i> -<br>acetyl-2- <i>O</i> -methyl-<br>L-arabinitol      | $\rightarrow$ 3,5)-L-Araf-<br>(1 $\rightarrow$          | 43, 58, 74, 85, 99, 117,<br>127, 141, 159, 172,<br>187, 201, 217, 261  | 3.4 |
| 17.13 | 1,2,4,5-tetra- <i>O</i> -<br>acetyl-3- <i>O</i> -methyl-<br>L-arabinitol      | $\rightarrow$ 2,5)-L-Araf-<br>(1 $\rightarrow$          | 43, 59, 74, 81, 87, 99,<br>113, 129, 145, 159,<br>172, 189             | 1.0 |
| 17.88 | 1,2,5-tri- <i>O</i> -acetyl-<br>3,4,6-tri- <i>O</i> -methyl-<br>D-mannitol    | $\rightarrow$ 2)-D-Man <i>p</i> -(1 $\rightarrow$       | 43, 59, 71, 87, 99, 117,<br>129, 141, 161, 171, 189                    | 1.6 |
| 18.06 | 1,4,5-tri- <i>O</i> -acetyl-<br>2,3,6-tri- <i>O</i> -methyl-<br>D-mannitol    | $\rightarrow$ 4)-D-Man <i>p</i> -(1 $\rightarrow$       | 43, 59, 71, 87, 101,<br>117, 129, 143, 161,<br>173, 189, 203, 233, 277 | 1.0 |
| 18.33 | 1,4,5-tri- <i>O</i> -acetyl-<br>2,3,6-tri- <i>O</i> -methyl-<br>D-galactitol  | $\rightarrow$ 4)-D-Galp-<br>(1 $\rightarrow$            | 43, 57, 71, 87, 99, 117,<br>131, 142, 157, 173,<br>187, 203, 233       | 4.0 |
| 18.54 | 1,5,6-tri- <i>O</i> -acetyl-<br>2,3,4-tri- <i>O</i> -methyl-<br>D-glucitol    | $\rightarrow$ 6)-D-Glcp-<br>(1 $\rightarrow$            | 43, 58, 71, 87, 99, 101,<br>117, 129, 143, 159,<br>161, 173, 189, 233  | 3.7 |
| 20.11 | 1,4,5,6-tetra- <i>O</i> -<br>acetyl-2,3-di- <i>O</i> -<br>methyl-D- glucitol  | $\rightarrow$ 4,6)-D-<br>Glc <i>p</i> -(1 $\rightarrow$ | 43, 58, 74, 85, 101,<br>117, 127, 142, 161,<br>171, 187, 201, 231, 261 | 1.7 |
| 20.22 | 1,4,5,6-tetra- <i>O</i> -<br>acetyl-2,3-di- <i>O</i> -<br>methyl-D-galactitol | $\rightarrow$ 4,6)-D-<br>Gal <i>p</i> -(1 $\rightarrow$ | 43, 58, 85, 101, 117,<br>129, 142, 159, 187,<br>201, 231, 261          | 1.5 |

|       | 1,3,5,6-tetra-O-  | (26) D                                                  | 43, 58, 74, 87, 101,    |     |
|-------|-------------------|---------------------------------------------------------|-------------------------|-----|
| 20.85 | acetyl-2,4-di-O-  | $\rightarrow$ 3,0)-D-<br>Glc <i>p</i> -(1 $\rightarrow$ | 117, 129, 139, 159,     | 1.7 |
|       | methyl-D-glucitol |                                                         | 173, 189, 233, 245, 305 |     |

PMAA: Partially Methylated Alditol Acetate

| Retentio<br>n time | PMAA                                                                              | Type of<br>linkage                                                             | Mass fragments(m/z)                                                   | Molar<br>ratios |
|--------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------|
| 15.81              | 1,4,5-tri- <i>O</i> -acetyl-<br>2,3-di- <i>O</i> -methyl-<br>L-arabinitol         | $\rightarrow$ 5)-L-<br>Araf-(1 $\rightarrow$                                   | 43, 58, 71, 87, 101, 117,<br>129, 161, 173, 189                       | 1.0             |
| 16.71              | 1,5-di- <i>O</i> -acetyl-<br>2,3,4,6-tetra- <i>O</i> -<br>methyl-D-glucitol       | $\begin{array}{c} \text{D-Glc}p\text{-}\\ (1\rightarrow\end{array}\end{array}$ | 43, 59, 71, 87, 101, 117,<br>129,<br>145, 161, 205                    | 1.7             |
| 17.29              | 1,5-di- <i>O</i> -acetyl-<br>2,3,4,6-tetra- <i>O</i> -<br>methyl-D-<br>galactitol | $\begin{array}{c} \text{D-Gal}p\text{-}\\ (1 \rightarrow \end{array}$          | 43, 59, 71, 87, 101, 117,<br>129,<br>145, 157, 161, 173, 191, 205     | 2.6             |
| 17.66              | 1,3,4,5-tetra- <i>O</i> -<br>acetyl-2- <i>O</i> -<br>methyl-L-<br>arabinitol      | $\rightarrow$ 3,5)-L-<br>Araf-(1 $\rightarrow$                                 | 43, 58, 74, 85, 99, 117, 127,<br>141, 159, 172, 187, 201,<br>217, 261 | 1.4             |
| 19.02              | 1,4,5-tri- <i>O</i> -acetyl-<br>2,3,6-tri- <i>O</i> -<br>methyl-D-<br>mannitol    | $\rightarrow$ 4)-D-<br>Man <i>p</i> -(1 $\rightarrow$                          | 43, 59, 71, 87, 101, 117,<br>129, 143, 161, 173, 203,<br>233, 277     | 1.2             |
| 19.36              | 1,5,6-tri- <i>O</i> -acetyl-<br>2,3,4-tri- <i>O</i> -<br>methyl-D-glucitol        | $\rightarrow$ 6)-D-<br>Glc <i>p</i> -(1 $\rightarrow$                          | 43, 59, 71, 87, 99, 101, 117,<br>129, 143, 159, 173, 189, 233         | 3.4             |
| 20.03              | 1,5,6-tri- <i>O</i> -acetyl-<br>2,3,4-tri- <i>O</i> -<br>methyl-D-<br>galactitol  | $\rightarrow$ 6)-D-<br>Gal <i>p</i> -(1 $\rightarrow$                          | 43, 59, 71, 87, 99, 117, 129,<br>143, 159, 173, 189, 233              | 3.2             |
| 21.11              | 1,4,5,6-tetra- <i>O</i> -<br>acetyl-2,3-di- <i>O</i> -<br>methyl-D-glucitol       | $\rightarrow$ 4,6)-D-<br>Glc <i>p</i> -(1 $\rightarrow$                        | 43, 58, 85, 101, 117, 127,<br>142, 159, 187, 201, 231,<br>261, 305    | 1.7             |
| 21.62              | 1,3,5,6-tetra- <i>O</i> -<br>acetyl-2,4-di- <i>O</i> -                            | $\rightarrow$ 3,6)-D-<br>Man <i>p</i> -(1 $\rightarrow$                        | 43, 58, 74, 87, 117, 129,<br>139, 159, 173, 189, 207,                 | 1.1             |

Table S5 The results of methylation analysis of RGP70-1-2

| methyl-D- | 233, 245, 305 |
|-----------|---------------|
| mannitol  |               |

References

- 1 J. Zhou, J. Gong, Y. Chai, D. Li, C. Zhou, C. Sun and J. M. Regenstein, *Glycoconj. J.*, 2022, **39**, 513–523.
- 2 Y. Zhang, Z. Chen, Z. Huang, Z. Wu, J. Xu and K. Wang, *Food Funct.*, 2019, **10**, 6720–6731.
- 3 H. Wang, J. Chen, P. Ren, Y. Zhang and S. Omondi Onyango, *Ultrason. Sonochem.*, 2021, **70**, 105355.
- 4 P. Ji, Y. Wei, W. Xue, Y. Hua, M. Zhang, H. Sun, Z. Song, L. Zhang, J. Li, H. Zhao and W. Zhang, *Int. J. Biol. Macromol.*, 2014, **67**, 195–200.
- 5 A. Sknepnek, S. Tomić, D. Miletić, S. Lević, M. Čolić, V. Nedović and M. Nikšić, *Food Chem.*, 2021, **342**, 128344.
- 6 J. Chen, L. Li, X. Zhou, P. Sun, B. Li and X. Zhang, *Food Funct.*, 2018, 9, 6337–6348.

Isolation, Structural characterization, and Hypoglycemic Activities The file includes: All original images for western blot PI3K 100 7055 40 35 control 0.05mM control 0.05mM 0.02mM control 0.05mM RGP70-1-1 RGP70-1-1RGP70-1-1 70 GAPDH <sup>control</sup> 0.05mM 0.02mM 0.02mM 0.05mM control 0.05mM RGP70-1-1RGP70-1-1RGP70-1-







