Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Intrinsic half-metallicity in two-dimensional Cr_2TeX_2 (X = I, Br, Cl)

monolayers

- Jun Zhang¹, Zixin He¹, Chuchu Gao¹, Yanyan Tao¹, Feng Liang¹, Guannan Li¹, Benling Gao^{1*}, Guang Song^{1*,2}
- 1 Department of Physics, Huaiyin Institute of Technology,1 Meicheng East Road, Huaian 223003, China^{*}
- 2 Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, China

*Corresponding author: Benling Gao

Email: jsblgao@163.com

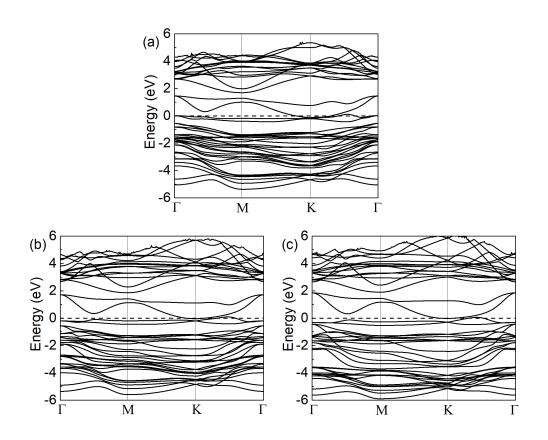


Figure S1. When the SOC is considered, the calculated band structures of Cr_2TeX_2 monolayers: (a) for Cr_2TeI_2 , (b) for Cr_2TeBr_2 , and (c) for Cr_2TeCl_2 . The dashed-black line at zero eV denotes the Fermi energy E_f . The coordinates of the high symmetry points are $\Gamma = (0, 0, 0)$, M = (0.5, 0, 0), and K = (1/3, 1/3, 0).

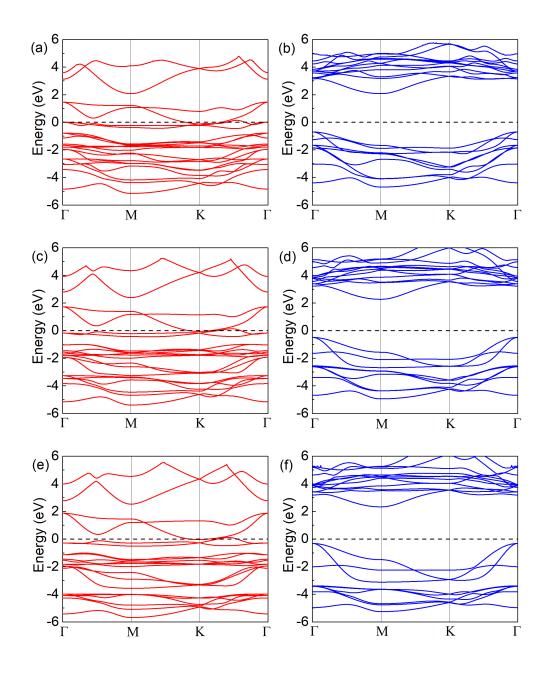


Figure S2. (Color online) When $U_{eff} = 3.0 \text{ eV}$, the calculated band structures of Cr_2TeX_2 monolayers with spin-up (left: marked in red color) and spin-down (right: marked in blue color) channels: (a) and (b) for Cr_2TeI_2 , (c) and (d) for Cr_2TeBr_2 , (e) and (f) for Cr_2TeCl_2 . The dashed-black line at zero eV denotes the Fermi energy E_f . The coordinates of the high symmetry points are $\Gamma = (0, 0, 0)$, M = (0.5, 0, 0), and K = (1/3, 1/3, 0).

Table S1. When the spin-orbit coupling is considered, relative energies of the different magnetic configurations per $2 \times 2 \times 1$ supercell. The energy of FM state is taken as zero. J_1 and J_2 represent the intra-sublayer and inter-sublayer exchange parameters, respectively.

	FM	AFM1	AFM2	J_1	J_2
	meV	meV	meV	meV	meV
Cr ₂ TeI ₂	0.0	1916.4	1914.8	9.969	19.963
Cr ₂ TeBr ₂	0.0	2428.2	1679.4	6.797	25.294
Cr ₂ TeCl ₂	0.0	2454.7	1710.1	6.967	25.570

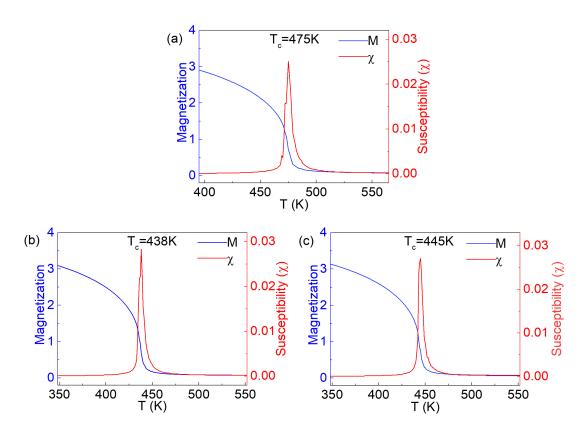


Figure S3. (Color online) When the spin-orbit coupling is considered, the average magnetic moment and susceptibility of the primitive Cr_2TeX_2 monolayer as a function of temperature, obtained from the Monte Carlo simulations with the 2D Heisenberg model: (a) Cr_2TeI_2 , (b) Cr_2TeBr_2 , and (c) Cr_2TeCl_2 . In the MC simulations, the D_i in the Hamiltonian H is taken the positive value for the Cr_2TeI_2 monolayer, and the D_i for the Cr_2TeBr_2 and Cr_2TeCl_2 monolayers is taken the negative value.