Supplementary Information

Concentration Quenching Inhibition and Fluorescence Enhancement in Eu³⁺-doped Molybdate Red Phosphors with Two-phase Mixing

Shuanglai Liu ^{ab}, Yimin Yan ^b, Xiaohan Liu ^b, Zheqian Cui ^b, Shiheng Jia ^b, Yiwen

Xing ^b, Shuang Guo ^b, Bao Wang ^b, Yunfeng Wang ^{b*}

^a School of Physics and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, P. R. China.

^b School of Information Engineering, Nanyang Institute of Technology, Nanyang 473004, P. R. China.

* Corresponding author. wangyunfeng@nyist.edu.cn

Fig. S1. Integrated emission intensity of NIMO: xEu^{3+} and the ratios of ${}^{5}D_{0} - {}^{7}F_{2} / {}^{5}D_{0} - {}^{7}F_{1} (R/O)$ with different Eu^{3+} doping concentrations.

Fig. S2. (a) Comparison of PL spectra between NIMO:90% Eu^{3+} and NEMO. (b) integrated PL intensity of NIMO:90% Eu^{3+} and NEMO.

Fig. S3. Absolute quantum yield of NIMO:90%Eu³⁺ phosphor with the excitation wavelength of 395nm

Fig. S4. Fluorescence decay curves and fitting lines of $NaIn(MoO_4)_2:x\%Eu^{3+}$ with different Eu^{3+} doping concentrations.

Fig. S5. (a) PL and (b) PLE spectra of $NaIn(MoO_4)_2:10\%Eu^{3+}$ with varying temperature ranging from 100 to 500K. (c) PL and (d) PLE spectra of $NaIn(MoO_4)_2:40\%Eu^{3+}$ with varying temperature ranging from 100 to 500K.