Supplementary Data

A novel microextraction technique aided by air agitation using a natural hydrophobic deep eutectic solvent for the extraction of fluvastatin and empagliflozin from plasma samples: Application to pharmacokinetic and drug-drug interaction study

Khalid Alhazzani^a, Ahmed Z. Alanazi^a, Aya M. Mostafa^{b,c}, James Barker^b, Mohamed M. El-Wekil^c, Al-Montaser Bellah H. Ali^{c*}

^a Department of Pharmacology and Toxicology, College of Pharmacy, <u>King Saud University</u>, Riyadh, Saudi Arabia

^b School of Life Sciences, Pharmacy, and Chemistry, <u>Kingston University</u>, Kingston-upon-Thames, London KT1 2EE, UK.

^c Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, <u>Assiut University</u>, Assiut, Egypt.

*e-mail: Almontaser_bellah@aun.edu.eg

Fig. S1. Chemical structure of NDES

HBD	HBA	Mole ratio (HBD: HBA)	Physical state	Extraction recovery (%)	
			-	FLV	EMP
Hippuric acid	Menthol	1:1	Tubid	-	-
Hippuric acid	Menthol	1:3	Tubid	-	-
Hippuric acid	Menthol	1:4	Clear	96.0	92.0
Hippuric acid	Thymol	1:1	Tubid	-	-
Hippuric acid	Thymol	1:3	Tubid	-	-
Hippuric acid	Thymol	1:4	Tubid	-	-
Butyric acid	Menthol	1:1	Clear	62.0	79.0
Butyric acid	Menthol	1:3	Clear	56.0	84.0
Butyric acid	Menthol	1:4	Clear	51.0	87.0

 Table S1. Preparation of hydrophobic DESs.

Table S2. The experimental levels of the factors used in the central composite design.

Factor]			
	Low axial (-a)	Low factorial (-1)	Center (0)	High factorial (+1)	High axial (+α)
Sample pH	3	4	5	6	7
DES volume	50	100	200	250	250
Centrifugation time	5	10	15	20	25
Number of air- agitation cycles	2	4	6	8	10

Run	A: pH	B: NDES	C:	D: Air-agitation	Recovery	Recovery
		volume	Centrifugation	cycles	FLV (%)	EMP (%)
		(µL)	time (min.)			
1	4	200	20	4	96	88
2	5	150	15	6	91	86
3	5	50	15	6	70	75
4	6	100	20	8	72	80
5	6	200	20	4	87	87
6	4	100	20	4	87	84
7	6	100	20	4	72	86
8	6	100	10	4	71	77
9	5	250	15	6	95	92
10	6	200	20	8	86	90
11	5	150	15	2	80	82
12	6	100	10	8	69	71
13	4	100	10	8	84	71
14	6	200	10	4	86	86
15	3	150	15	6	95	85
16	6	200	10	8	83	81
17	4	200	10	4	96	83
18	7	150	15	6	75	85
19	4	100	10	4	85	74
20	5	150	25	6	86	86
21	5	150	15	6	85	85
22	4	200	20	8	95	90
23	5	150	15	6	86	84
24	4	100	20	8	86	80
25	5	150	15	6	86	86
26	4	200	10	8	93	80
27	5	150	15	6	86	83
28	5	150	15	10	78	74
29	5	150	5	6	80	77
30	5	150	15	6	86	86

Table S3. CCD matrix and the obtained extraction recoveries.

Table S4. Analysis of the variance for the fitted quadratic polynomial model for the extraction of

 FLV and EMP.

Parameter	FLV	EMP
R ²	0.9725	0.9531
Adjusted R ²	0.9468	0.9093
Predicted R ²	0.8957	0.7684
Adeq Precision	22.2695	18.0473

Parameter	FLV	EMP
LR (ng mL ⁻¹)	20.0 - 380.0	5.0 - 300.0
R ²	0.9986	0.9966
LOD (ng mL ⁻¹)	6.3	1.5
LOQ (ng mL ⁻¹)	19.2	4.6
EF	48	42
ER (%)	96	92
Precision, RSD (%)	Intra-day: 1.4–2.7	Intra-day: 2.1–3.2
	Inter-day: 1.1–2.2	Inter-day: 1.7–2.8

Table S5. Quantitative parameters of the developed method for the analytes.

Fig. S2. (A) Fluorescence spectra for different concentrations of FLV and EMP in spiked water samples after NDES-DLLME, (B) the linear calibration curve.

Fig. S3. (A) Fluorescence spectra for different concentrations of FLV and EMP in spiked plasma samples after NDES-DLLME, <u>**Black line**</u> represents blank plasma (B) the linear calibration curves.

Drug	Amount added (ng mL ⁻¹)	Amount found (ng mL ⁻¹)	Relative recovery (RR%)	RSD%
FLV	60.0	67.3	95.17	2.12
	180.0	184.2	96.67	1.54
	300.0	299.5	96.43	3.21
EMP	30.0	39.5	90.00	2.70
	110.0	109.9	88.54	1.75
	210.0	205.2	91.76	2.81

Table S6. Relative recoveries (%) from analysis of FLV and EMP in plasma samples at optimum conditions (n=3).

Amount measured in the real sample (Blank) (at zero concentration of the studied drugs) = 10.2 ng mL⁻¹ for EMP and 12.5 ng mL⁻¹ for FLV.

Table S7. Selectivity of the proposed method for 100 ng mL⁻¹ of FLV and EMP in the presence of different ions and molecules (n = 3).

Ions and molecules	FLV	EMP Tolerable limit	
—	Tolerable limit		
	$(ng mL^{-1})$	$(ng mL^{-1})$	
Ca ²⁺	3500	4000	
\mathbf{K}^+	5000	3000	
SO4 ²⁻	6000	5000	
CO3 ²⁻	7000	6000	
Mg^{2+}	3000	4000	
F ⁻	5000	3000	
Cl ⁻	5000	6000	
Lactose	1400	1800	
Glucose	1800	1900	
Zn ²⁺	2500	2600	
Fe ³⁺	3500	4500	
Tryptophan	700	600	
Tyrosine	800	900	
Phenylalanine	900	800	
Vitamin A	900	700	
Riboflavin	600	800	
Creatinine	800	900	
Pyridoxine	500	1000	

Table S8. Pharmacokinetic parameters of FLV after a single oral administration of EMP alone and after oral coadministration of EMP in the studied rabbits (mean \pm SD, n = 3)

Parameters	FLV alone	FLV co-administered	P value*
		with EMP	
C_{\max} (ng mL ⁻¹)	250.2 ± 22.58	352.2 ± 20.11	0.0057
T _{max} (hr)	1.5 ± 0.0	1.5 ± 0.0	
K_e (hr ⁻¹)	0.16 ± 0.024	0.090 ± 0.071	0.0081
t0.5 (hr)	4.27 ± 0.78	7.73 ± 0.96	0.0045
K_{a} (hr ⁻¹)	2.24 ± 0.42	2.52 ± 0.42	0.058
t0.5a (hr)	0.31 ± 0.14	0.28 ± 0.42	0.079
<i>AUC</i> ₀₋₂₄ (ng hr mL ⁻¹)	1343.0 ± 452.3	2576.25 ± 245.2	0.0012
$AUC_{0-\infty}$ (ng hr mL ⁻¹)	1367.08 ± 143.5	2896.39 ± 189.25	0.0040
MRT (hr)	6.99 ± 0.89	7.66 ± 0.77	0.059

*A difference was considered significant at P < 0.05