Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

> Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Supporting information

An efficient biosensor using functionalized microneedle of Cu₂O-based CoCu-LDH for glucose detection

Jialei Zhu,^a Fuqin Wang, ^a Jiaying Chen ^a and Chang Liu* ^a

a. College of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning, P. R. China.

Table

Table S1. The performance comparison of CoCu-LDH/Cu₂O/ANE with other published glucose sensors.

Table S2. The influence of different detection methods on the glucose test in human serumsamples.

Table S1.

Electrode	subs	Linear Range	Sensitivity (µA	Detection limit	References
	trate	(mM)	mM⁻¹)	(μM)	
Au@Cu ₂ O	GCE	0.05~2.0	50.48	18	1
Ag@Ni-MOF	GCE	0.005~0.5	11.31	5	2
CuO/Cu ₂ O	GCE	0.1~6	137.67	1	3
Cu _x S _y	SPCE	0.2~16	13	0.2	4
NiCeO _x /MWCNTs	GCE	0.007~0.466	84.27	1.8	5
		0.466~3.44	53.22		
CoCu-LDH/Cu ₂ O	ANE	0.03~0.40	116.13	0.46	This work
		0.40~6.00	52.08		

The performance comparison of CoCu-LDH/Cu₂O/ANE with other published glucose sensors.

Table S2.

Hernital Detection (mM)	Co-LDH/Cu ₂ O/ANE	Sinocare SG-103 Detection	
	Detection (mM)	(mM)	
0.498	0.49	0.48	
0.518	0.51	0.55	

The influence of different detection methods on the glucose test in human serum samples.

Figure captions

Fig. S1. Effects of electrodeposition conditions on CoCu-LDH/Cu₂O/ANE in the presence of 4 mM glucose (A) different electrodeposition potentials for Cu₂O NPs, (B) different electrodeposition potentials for CoCu-LDH, (C) different electrodeposition time for Cu₂O NPs, and (D) different electrodeposition time for CoCu-LDH. Inset: the effect of different preparation conditions on Δ Ip.

Fig. S2. (A) FE-SEM images of CoCu-LDH/Cu₂O/ANE preparation with the optimum electrodeposition parameters. (B) FE-SEM images of CoCu-LDH/Cu₂O/ANE electrode prepared by CoCu-LDH with electrodeposition potential of -0.65 V and deposition time of 350 s.

Fig. S3. Optimizing the conditions of (A) the electrodeposition concentration of $CuSO_4$ in the presence of 4 mM glucose, (B) the electrodeposition molar ratio of $Co(NO_3)_2/CuSO_4$ in the presence of 4 mM glucose, (C) the applied potential of CoCu-LDH/Cu₂O/ANE sensor with the continuous addition of 0.2 mM glucose. Inset: the effect of different preparation conditions on Δ Ip. All optimal conditions were obtained in the 0.1 M NaOH solution.

Fig. S4. (A) Amperogram of the CoCu-LDH/Cu₂O/ANE sensor during successive addition of 0.5 mM glucose, 0.05 mM DA, 0.05 mM AA, 0.05 mM UA, 0.05 mM NaCl into 0.1 M NaOH solution at the applied potential of 0.55 V. (B) The Δ Ip of five independent CoCu-LDH/Cu₂O/ANE (E1, E2, E3, E4, E5) towards 4 mM glucose in 0.1 M NaOH. (C) The electrocatalytic efficiency of the CoCu-LDH/Cu₂O/ANE sensor toward 1 mM glucose in 15 days. (D) FE-SEM images of CoCu-LDH/Cu₂O/ANE after repeated usage.

Fig. S1. Effects of electrodeposition conditions on CoCu-LDH/Cu₂O/ANE in the presence of 4 mM glucose (A) different electrodeposition potentials for Cu₂O NPs , (B) different electrodeposition potentials for CoCu-LDH, (C) different electrodeposition time for Cu₂O NPs, and (D) different electrodeposition time for CoCu-LDH. Inset: the effect of different preparation conditions on Δ Ip.

Fig. S2. (A) FE-SEM images of CoCu-LDH/Cu₂O/ANE preparation with the optimum electrodeposition parameters. (B) FE-SEM images of CoCu-LDH/Cu₂O/ANE electrode prepared by CoCu-LDH with electrodeposition potential of -0.65 V and deposition time of 350 s.

Fig. S3. Optimizing the conditions of (A) the electrodeposition concentration of $CuSO_4$ in the presence of 4 mM glucose, (B) the electrodeposition molar ratio of $Co(NO_3)_2/CuSO_4$ in the presence of 4 mM glucose, (C) the applied potential of $CoCu-LDH/Cu_2O/ANE$ sensor with the continuous addition of 0.2 mM glucose. Inset: the effect of different preparation conditions on Δ Ip. All optimal conditions were obtained in the 0.1 M NaOH solution.

Fig. S4. (A) Amperogram of the CoCu-LDH/Cu₂O/ANE sensor during successive addition of 0.5 mM glucose, 0.05 mM DA, 0.05 mM AA, 0.05 mM UA, 0.05 mM NaCl into 0.1 M NaOH solution at the applied potential of 0.55 V. (B) The Δ Ip of five independent CoCu-LDH/Cu₂O/ANE (E1, E2, E3, E4, E5) towards 4 mM glucose in 0.1 M NaOH. (C) The electrocatalytic efficiency of the CoCu-LDH/Cu₂O/ANE sensor toward 1 mM glucose in 15 days. (D) FE-SEM images of CoCu-LDH/Cu₂O/ANE after repeated usage.

- 1. Y. Su, H. Guo, Z. Wang, Y. Long, W. Li and Y. Tu, Sensors and Actuators B-Chemical, 2018, 255, 2510-2519.
- 2. J. Cao, J. Yun, N. Zhang, Y. Wei, H. Yang and Z. Xu, Synthetic Metals, 2021, 282.
- 3. R. Li, X. Liu, H. Wang, Y. Wu, K. C. Chan and Z. Lu, *Electrochimica Acta*, 2019, **299**, 470-478.
- 4. P. Tetyana, N. Mphuthi, A. N. Jijana, N. Moloto, P. M. Shumbula, A. Skepu, L. S. Vilakazi and L. Sikhwivhilu, *Journal*, 2023, **13**.
- 5. M. Waqas, L. Yang, Y. Wei, Y. Sun, F. Yang, Y. Fan and W. Chen, *Electrochimica Acta*, 2023, 440.

References