Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Supplementary Material

for

Experimental and DFT insights into the adsorption mechanism of methylene blue by alkali-modified corn straw biochar

Huali Yu § ^a, Yulu Zhang § ^a, Lianfeng Wang ^{a, *}, Ya Tuo ^b, Song Yan ^a, Junling Ma ^a, Xue Zhang ^a, Yu Shen ^a, Haiyan Guo ^a, Lei Han ^a

^a School of Environmental & Chemical Engineering, Dalian Jiaotong University, Dalian

116021, China

^b Environmental Development Center of the Ministry of Ecology and Environment, Beijing 100006, China

* Corresponding author, Lianfeng Wang

Phone/Fax: +86-411-84107585,

Email: wanglfdl@aliyun.com

§ Huali Yu and Yulu Zhang contributed equally to this paper.

This file contains 7 tables and 8 figures.

Sample	Pyrolysis	Solid-liquid	NaOH	Modification	Removal	
	temperature	ratio	concentration	time	efficiency	
	(°C) A	(v/w) B	(M) C	(h) D	(%)	
C1	300	1:10	0.5	6	98.12	
C2	300	1:20	1	12	98.28	
C3	300	1:30	1.5	18	98.20	
C4	300	1:40	2	24	98.79	
C5	400	1:10	1	18	59.00	
C6	400	1:20	0.5	24	45.53	
C7	400	1:30	2	6	40.51	
C8	400	1:40	1.5	12	70.34	
С9	500	1:10	1.5	24	43.30	
C10	500	1:20	2	18	44.79	
C11	500	1:30	0.5	12	25.46	
C12	500	1:40	1	6	30.48	
C13	600	1:10	2	12	96.32	
C14	600	1:20	1.5	6	92.92	
C15	600	1:30	1	24	93.84	
C16	600	1:40	0.5	18	91.61	
K ₁₋₁	98.3	74.2	65.2	65.5		
K ₁₋₂	53.8	70.4	70.4	72.6		
K ₁₋₃	36.0	64.5	76.2	73.4		
K ₁₋₄	93.7	72.8	70.1	70.4		
Range	62.3	9.7	11.0	7.9		
Factor priority		A > C > B > D				
Optimal conditions	A_1B_1C	A ₁ B ₁ C ₃ D ₃ : 300 °C, 1:10, 1.5 M, and 18 h				

 Table S1.
 Orthogonal experiment results and range analyses of NaOH-modified biochar.

 $\overline{K_{{\scriptscriptstyle 1}\cdot{\scriptscriptstyle 1}}}$ ~K_{{\scriptscriptstyle 1}\cdot{\scriptscriptstyle 4}} corresponded to the average value of different levels of factors.

Factors	Sum of squares	Degrees of	Mean square	F-value	Significance
		freedom			
Pyrolysis temperature (°C)	1.112	3	0.371	51.496	***
Solid-liquid ratio (v/w)	0.022	3	0.007	1.016	
NaOH concentration (M)	0.024	3	0.008	1.126	
Modification time (h)	0.015	3	0.005	0.7	

Table S2. Results of variance analysis of NaOH-modified biochar orthogonal experiment.

 $\overline{P < 0.05}$ indicated a significant difference represented by ***.

Species	SSA (m ² /g)	TPV (cm ³ /g)	AP (nm)
NaCBC ₃₀₀	92.005	0.142	10.239
CBC ₃₀₀	101.213	0.157	8.589
CBC_{400}	148.852	0.169	7.988
CBC ₅₀₀	169.562	0.171	6.525
CBC ₆₀₀	187.137	0.189	5.834

 $\textbf{Table S3.} \quad \text{Selected characteristics of } \text{NaCBC}_{300}, \text{CBC}_{300}, \text{CBC}_{400}, \text{CBC}_{500}, \text{and } \text{CBC}_{600}.$

No.	Location (cm ⁻¹)	Assignments	Reference
1	3408	-OH stretch vibration	(Mayakaduwa et al., 2017)
2	2924-2933	C-H vibration of -CH _x group	(Rong et al., 2020)
3	2359	CO ₂ species	(Al-Wabel et al., 2019)
4 1700	1700	C=O stretch of ketones, aldehydes,	(Rong et al., 2020; Tomczyk
	1700	land esters	et al., 2020)
5	1609-1632	C=O stretch in the aromatic rings	(Chen et al., 2022)
6	1531	C=C stretching vibration	(Wang et al., 2020)
7	1444 1449	aromatic C=O and C=C functional	$(\mathbf{P}_{ons} \text{ at al} 2020)$
	1444-1440	groups	(Rolig et al., 2020)
8	670	CO ₂ species	(Al-Wabel et al., 2019)

 Table S4.
 The location and assignments of FTIR peaks.

	C 1s	C=C	C-C	C-N	C-0	C=O	C-Na
	BE (eV)	284.00	284.63	285.62	286.85	288.50	-
CBC ₃₀₀	Peak area	31231	28899	20618	5805	3167	-
	Percentage (%)	34.81	32.21	22.98	6.47	3.53	-
	BE (eV)	284.00	285.58	285.40	286.27	287.87	282.89
NaCBC ₃₀₀	Peak area	28872	44204	16100	10637	9702	1747
	Percentage (%)	25.95	39.73	14.47	9.56	8.72	1.57
	O 1s	C-O	-OH	С=О			
	BE (eV)	531.40	-	532.79			
CBC ₃₀₀	Peak area	21004	-	32591			
	Percentage (%)	39.19	-	60.81			
	BE (eV)	531.24	532.08	533.15			
NaCBC ₃₀₀	Peak area	16340	13669	34718			
	Percentage (%)	25.75	21.54	52.71			
	N 1s	-NH	C-N				
	BE (eV)	398.99	400.23				
CBC ₃₀₀	Peak area	1272	3698				
	Percentage (%)	25.60	74.40				
	BE (eV)	398.86	400.22				
NaCBC ₃₀₀	Peak area	1297	4260				
	Percentage (%)	23.34	76.66				

Table S5. Fitting parameters of XPS C 1s, O 1s, and N 1s spectra in different systems.

Dosage	Langmuir			Freundlich		
(g/L)	Q _m (mg/g)	K _L	R ²	K _F	n	R ²
0.02	250.155	124.659	0.834	182.756	12.752	0.924
0.04	210.865	0.941	0.781	115.613	6.321	0.994
0.06	174.196	3.145	0.900	113.367	6.455	0.893
0.08	149.204	3.367	0.992	95.885	3.976	0.916
0.10	125.210	7.043	0.963	101.537	3.459	0.950

Table S6. Isothermal adsorption fitting parameters of different $NaCBC_{300}$ dosages for MB.

Parameters	Energy (eV)
Е _{номо}	-2.8685
E _{LUMO}	-0.9166
Energy gap (E _{LUMO} - E _{HOMO})	1.9519
Ionization potential (I = - E_{HOMO})	2.8685
Electron affinity (A = $- E_{LUMO}$)	0.9166
Chemical hardness ($\eta = (I-A)/2$)	0.9760
Chemical softness ($\zeta = 1/2\eta$)	0.5123
Electronegativity ($\chi = (I + A)/2$)	1.8926
Chemical potential ($\mu = -(I + A)/2$)	-1.8926
Electrophilicity index ($\omega = \mu^2/2\eta$)	1.8350

Table S7. HOMO and LUMO energy values and other parameters of MB.

Fig. S1. Flow chart for CBC and NaCBC preparation and MB adsorption.

Fig. S2. Morphologies of NaCBCs (C1-C16).

Fig. S3. SEM observations of (a-c) CBC_{400} , (d-f) CBC_{500} , and (g-i) CBC_{600} .

Fig. S4. N_2 adsorption/desorption isotherms and pore size distribution plots (inset) of (a) CBC₃₀₀ and (b) NaCBC₃₀₀.

Fig. S5. XPS Na 1s spectrum of NaCBC₃₀₀.

Fig. S6. MB adsorption by pristine corn straw and NaOH modified corn straw without pyrolysis.

Fig. S7. Reusability of NaCBC₃₀₀ for MB removal.

Fig. S8. (a) Charge amounts, (b) f^- , (c) f^+ , and (d) f^0 of each atom on MB.

References

- Al-Wabel, M., Elfaki, J., Usman, A., Hussain, Q., Ok, Y.S., 2019. Performance of dry water- and porous carbon-based sorbents for carbon dioxide capture. Environmental Research 174, 69-79. https://doi.org/10.1016/j.envres.2019.04.020.
- Chen, F., Sun, Y., Liang, C., Yang, T., Mi, S., Dai, Y., Yu, M., Yao, Q., 2022. Adsorption characteristics and mechanisms of Cd²⁺ from aqueous solution by biochar derived from corn stover. Scientific Reports 12, 17714. https://doi.org/10.1038/s41598-022-22714-y.
- Mayakaduwa, S.S., Herath, I., Ok, Y.S., Mohan, D., Vithanage, M., 2017. Insights into aqueous carbofuran removal by modified and non-modified rice husk biochars. Environmental Science and Pollution Research 24, 22755-22763. https://doi.org/10.1007/s11356-016-7430-6.
- Rong, K., Wang, J., Zhang, Z., Zhang, J., 2020. Green synthesis of iron nanoparticles using Korla fragrant pear peel extracts for the removal of aqueous Cr(VI). Ecological Engineering 149, 105793. https://doi.org/10.1016/j.ecoleng.2020.105793.
- Tomczyk, A., Sokołowska, Z., Boguta, P., 2020. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Biotechnology 19, 191-215. https://doi.org/10.1007/s11157-020-09523-3.
- Wang, X., Feng, J., Cai, Y., Fang, M., Kong, M., Alsaedi, A., Hayat, T., Tan, X., 2020. Porous biochar modified with polyethyleneimine (PEI) for effective enrichment of U(VI) in aqueous solution. Science of the Total Environment 708, 134575. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.134575.