Supporting Information

Redox Cationic Frontal Polymerization: A new strategy towards fast and efficient curing of defect-free fiber reinforced polymer composites

Muhammad Salman Malik, Markus Wolfahrt and Sandra Schlögl

Polymer Competence Center Leoben, Rossegerstraße 12, 8700 Leoben, Austria

S1 Image of a Litestone-RCFP resin cured in a Teflon mold. The portions on the cured plate from where samples were taken for DSC and FT-IR ATR measurements are labelled.

Table S1 DSC and FT-IR ATR results for samples taken from Litestone-RCFP cured in a Teflon plate. The DSC and FT-IRATR measurements were done according to the methods given in the manuscript.

Portion number	Tg1 (°C)	ATR conversion (%)
2	88	97
3	95	98
4	88	95
5	94	98

S2 Tensile stress-strain curves for RCFP, Ref and RICFP Litestone resins with at least 5 test specimens.

S3 Thermogravimetric profile of a UD-50 composite plate impregnated with Litestone reins cured via RCFP route. The fiber volume content calculated is equal to 62%.

S4 Results for rheology measurements in frequency-time sweep mode for Litestone-RCFP resins within temperature ranges between 25-50°C.

S5 Logarithmic storage modulus and tan delta curve for cycloaliphatic epoxy cured via RCFP route along with corresponding (b) loss modulus curve.