Supplementary Material

An economical and simple method for preparing highly permeable

and chlorine-resistant reverse osmosis membranes with potential

commercial applications

Junqing Sun^a, Qianwen Zhang^b, Wenjing Xue^a, Wande Ding ^{a,c*}, Kefeng Zhang^a, Shan Wang ^{a*}

^a School of Municipal and Environmental Engineering, Shandong Jianzhu University,

Jinan, 250101, China

^b School of Environment, Tsinghua University, Beijing, 100084

^c Shandong Shuifa Environmental Technology Co., Ltd, Jining, 272000, China

*Corresponding author: Wande Ding, E-mail address: dingwande18@sdjzu.edu.cn;

Shan Wang, E-mail address: 14045@sdjzu.edu.cn

Fig. S1. (a) Relationship between PIP concentration and absorbance and (b) relationship between MPD concentration and absorbance

Fig. S2. Experimental setup of RO

Fig. S3. 3D AFM images of $\ensuremath{\text{TFC}}_W$ membranes corresponding to the flat AFM images in the

manuscript

Fig. S4 C1s deconvoluted peaks in XPS spectra.

	C1s			N1s			Ols		
Membrane	Energy (eV)	Species	(%)	Energy (eV)	Species	(%)	Energy (eV)	Species	(%)
TFC _{W-1:0}	284.7	С=С, С-С, С-Н	67.9	398.9	C-NH ₂	10.8	531.2	N-C=O/O-C= O	62.7
	285.8	C-N	20	400	N-C=O	80.3	532.3	N-C=OН/О-С= O Н	24.1
	287.9	N-C=O/O-C=O	12.1	401.3	C-NH3 ⁺	8.9	533.6	O- C=O	13.2
TFC _{W-4:1}	284.6	С=С, С-С, С-Н	50.7	398.9	C-NH/C-NH ₂	17.1	531.2	N-C=0/0-C= 0	64.7
	285.6	C-N	26.3	399.9	N-C=O	76.6	532.3	N-C=OH/O-C=OH	18.4
	287.9	N-C=O/O-C=O	23	401.3	$\text{C-NH}_2^+\!/\text{C-NH}_3^+$	6.3	533.5	O-C=O	16.8
TFC _{W-1:1}	284.8	С=С, С-С, С-Н	56.6	398.9	C-NH/C-NH ₂	11.1	531.1	N-C=O/O-C= O	51.2
	285.8	C-N	31.7	399.9	N-C=O	74.8	531.9	N-C=OН/О-С= O Н	28.7
	288.2	N-C=O/O-C=O	11.7	400.9	$\text{C-NH}_2^+\!/\text{C-NH}_{3^+}$	14.1	533.5	O -C=O	20.1
TFC _{W-1:4}	284.6	С=С, С-С, С-Н	54.1	399	C-NH/C-NH ₂	20.8	531.1	N-C=0/0-C= 0	65.6
	285.6	C-N	36.2	399.9	N-C=O	75.2	532.1	N-C=OH/O-C= O H	18.8
	287.8	N-C=O/O-C=O	9.7	401.4	$\text{C-NH}_2^+\!/\text{C-NH}_3^+$	4.0	533.2	O- C=O	15.6
TFC _{W-0:1}	284.4	С=С, С-С, С-Н	48.7	398.9	C-NH	16.5	530.8	N-C=O/O-C= O	64.4
	285.5	C-N	43.1	399.6	N-C=O	77.1	531.7	N-C=OН/О-С=ОН	25.5
	287.5	N-C=O/O-C=O	8.2	401.3	C-NH2 ⁺	6.4	533	O-C=O	10.1

Table S1 XPS results of the $\ensuremath{\mathsf{TFC}}_W$ membranes