Supplementary data

A novel portable immuno-device for the recognition of Lymphatic vessel endothelial hyaluronan receptor-1 biomarker using GQD-AgNPrs conductive ink stabilized on the surface of cellulose

Ahmad Mobed ^{abc}, Fereshteh Kohansal ^d, Sanam Dolati ^{c*}, Mohammad Hasanzadeh ^{a,d,**}

^a Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

^b Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences, Iran

^c Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Faculty of

Medicine, Tabriz University of Medical Sciences, Iran

^d Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

Corresponding authors

* Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences, Iran sanam.dolati@gmail.com

** Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran. <u>hasanzadehm@tbzmed.ac.ir</u>

Fig. S1: A) TEM images of Ag/GQDs nano-ink in different magnification. **B and C)** XRD and Raman Spectra of Ag/GQDs nano-ink.

Fig.S2. EDS and map-analysis of **(A)** AgNPrs-GQD nano-ink **(B)** AgNPrs-GQD nano-ink-Ab, and **(C)** AgNPrs-GQD nano-ink -Ab-BSA, **D)** AgNPrs-GQD nano-ink -Ab-BSA-Ag.

Fig.S3. Photographic images of diverse conductive tracks drawn using AgNPrs-GQDs nano-ink. **A)** Establishing electrical connections between 3-volt battery and a LED lamp connected to designated surface coated with AgNPrs-GQD nano-ink. **B)** Examining the resistance of a photographic paper surface coated with AgNPrs-GQD nano-ink.

Fig. S4. Photographic image of three electrodes paper-based sensor prepared by direct writing of conductive nano-ink.

Fig. S5. A) DPV's of three similar types of immunosensor prepared in the same condition. **B)** Histograms of peak current *versus* types/number of biosensor. Supporting electrolyte is $K_4Fe(CN)_6/K_3Fe(CN)_6/KCl$.

Fig. S6. A) SWV's of three types of immunosensor in the presence of some concentrations of LYVE-1 (40 pg.ml) for inter-electrode reproducibility test. B) Histograms of peak current versus the types/number of biosensor. Supporting electrolyte was K_4 Fe(CN)₆/K₃Fe(CN)₆/KCl.

Fig.S7. A) CVs of AgNPrs/GQD nano-ink stabilized on the surface of paper in different cycles (1st, 5th, 10th and 20th cycles). **B)** Histograms of peak current *versus* number of cycles.

Fig.S8. A) DPV's of AgNPrs-GQDs nano ink/ Biotin-Ab/BSA/Ag (20 pg.ml) modified paper-based three

electrodes with same concentration of Ag for study of repeatability in three days. **B**) Histograms of peak current versus the types of modified electrodes. Supporting electrolyte was $K_4Fe(CN)_6/K_3Fe(CN)_6/KCl$. (RSD for $E_1=0.28$, $E_2=0.178$, $E_3=0.2$).

Fig.S9. A) SWVs of AgNPrs-GQDs modified photographic paper for investigation of inter-day stability of immunosensor substrate, in three days. **B)** Histograms of peak current *versus* three days of incubation.

Fig.S10. A) CVs of immunosensor tested for the detection of LYVE-1, in the presence of interferer species (PSA, CEA, CA15-3). B) Histograms of peak current *versus* type interferer species.