Electronic Supplementary Information – First-principles study of mercaptoundecanoic acid molecule adsorption and gas molecule penetration onto silver surface: An insight for corrosion protection

Chung-Hyok Kim^a, Chol Ryu^b, Yong-Hak Ro^a, Song-Il O^c, Chol-Jun Yu^a*

^aInstitute of Electronic Materials, High-Tech and Development Centre, Kim Il Sung University, Pyongyang, PO Box 76, Democratic People's Republic of Korea

^bComputational Materials Design (CMD), Faculty of Materials Science, Kim Il Sung University,

Pyongyang, PO Box 76, Democratic People's Republic of Korea

^cPhysics Department, O Jung Hub Chongjin University of Education,

Chongjin, Hamgyong North Province, Democratic People's Republic of Korea

Table 1: Bond length and bond angle of MUA molecule determined using different DFT programs including pseudopotential-PAO program SIESTA, pseudopotential plane wave program Quantum ESPRESSO (QE), and density functional tight binding program DFTB.

	SIESTA	QE	DFTB		
Bond length (Å)	Bond length (Å)				
S1-H1	1.353	1.355	1.331		
S1-C1	1.826	1.828	1.825		
C1-H2	1.090	1.103	1.090		
C1-H3	1.087	1.104	1.089		
C1-C2	1.520	1.525	1.517		
C2-H4	1.104	1.107	1.093		
C2-H5	1.092	1.105	1.091		
C2–C3	1.526	1.530	1.525		
C3-H6	1.100	1.107	1.092		
C3–H7	1.109	1.107	1.092		
C4–H8	1.091	1.104	1.091		
C4–H9	1.104	1.105	1.091		
C4–C5	1.524	1.527	1.524		
C5-H10	1.101	1.107	1.093		
C5-H11	1.096	1.105	1.092		
C5-C6	1.516	1.513	1.506		
C6-O1	1.373	1.366	1.338		
C6-O2	1.217	1.216	1.203		
O1-H12	0.989	0.988	0.970		
Bond angle (deg)					
H1-S1-C1	93.48	96.41	95.82		
H2C1H3	106.21	106.84	108.97		
H4C2H5	108.04	105.93	107.78		
H6-C3-H7	103.59	105.83	107.62		
H8C4H9	104.99	105.78	107.54		
H10-C5-H11	102.65	104.76	106.75		
O1-C6-O2	122.45	122.25	122.05		
S1-C1-C2	115.05	114.44	111.99		
C1C2C3	113.04	112.92	111.23		
C4-C5-C6	118.64	117.68	114.41		
C5-C6-O2	124.51	124.54	124.53		
C5-C6-O1	113.04	113.21	113.42		

^{*}Corresponding author: Chol-Jun Yu, Email: cj.yu@ryongnamsan.edu.kp

Fig. S1 Convergence test for formation energies of $Ag(1 \ 0 \ 0)$ and $(1 \ 1 \ 1)$ surfaces with respect to the number of layers (top panel) and vacuum thickness (bottom panel).

Fig. S2 Different positions of MUA adsorption on Ag(1 0 0) (3×3) surface cell.

Fig. S3 Different positions of MUA adsorption on Ag(1 0 0) (2×2) surface cell.

Fig. S4 Different positions of MUA adsorption on Ag(1 1 1) (3×3) surface cell.

Fig. S5 Different positions of MUA adsorption on Ag(1 1 1) (2×2) surface cell.

Fig. S6 Atom-projected density of states (DOS) in MUA-adsorbed Ag(1 0 0) and (1 1 1) surface complexes.

Fig. S7 Optimized geometries of small molecule adsorbed Ag(1 0 0) complexes.

Fig. S8 Optimized geometries of small molecule adsorbed Ag(1 1 1) complexes.

Fig. S9 Geometries of transition states (TS) and final state (FS) for H_2O migration in MUA@Ag(1 0 0) complex.

Fig. S10 Geometries of transition states (TS) and final state (FS) for H_2S migration in MUA@Ag(1 0 0) complex.

Fig. S11 Geometries of transition states (TS) and final state (FS) for O_2 migration in MUA@Ag(1 0 0) complex.

Fig. S12 Geometries of transition states (TS) and final state (FS) for H_2O migration in MUA@Ag(1 1 1) complex.

Fig. S13 Geometries of transition states (TS) and final state (FS) for H_2S migration in MUA@Ag(1 1 1) complex.

Fig. S14 Geometries of transition states (TS) and final state (FS) for O_2 migration in MUA@Ag(1 1 1) complex.