Supporting information

Highly sensitive and selective detection of triphosgene with a 2-(2'hydroxyphenyl)benzimidazole derived fluorescent probe

Wen-Zhu Bi,^{*ab} Yang Geng,^c Wen-Jie Zhang,^a Chen-Yu Li,^a Chu-Sen Ni,^a Qiu-Juan Ma,^{*ab} Su-Xiang Feng,^{*bde} Xiao-Lan Chen^f and Ling-Bo Qu^f

^a School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China, 450046. E-mail: biwenzhu2018@hactcm.edu.cn; maqiujuan104@126.com

^b Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application, Zhengzhou, China, 450046. E-mail: fengsx221@163.com

^c Department of Pharmacy, Zhengzhou Railway Vocational and Technical College, Zhengzhou, China, 450046.

^d Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China, 450046

^e Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P. R. China, Zhengzhou, China, 450046

^f College of Chemistry, Zhengzhou University, Zhengzhou, China, 450052

Contents

1. Optimization of triethylamine for the generation of phosgene				S2
2. Investigation of the effect of solvents				S2
3. Measurement of the fluoresce	nce quantum yiel	d		S3
4. Measurement of the LoD for 4	-AHBI			S3
5. Fluorescence spectra of 4-	AHBI with triphe	osgene in th	e presence of	interfering
compounds				S4
6. Table S1 Determination	of triphosgen	e in the	presence of	interfering
compoundsS4				
7. Exploration of the sensing me	chanism			S4
8. ¹ H NMR, ¹³ C	NMR and	HRMS	copies	of 4-
AHBI	S7			

1. Optimization of triethylamine for the generation of phosgene

Figure S1 a) Fluorescence spectra of 10 μ M **4-AHBI** solutions containing triethylamine (TEA) (0-1 μ M) upon addition of triphosgene (3.5 μ M), λ ex = 357 nm, slit width = 2.5/2.5 nm; b) Fluorescence intensities @386 nm vs concentration of TEA.

2. Investigation of the effect of solvents

Figure S2 The fluorescence spectra of **4-AHBI** (10 μ M) in different solvents without (black) and with (red) triphosgene (3.5 μ M). a: CH₂Cl₂ (λ ex = 357 nm, λ em = 386 nm), b: CHCl₃ (λ ex = 343 nm, λ em = 440 nm), c: MeOH (λ ex = 330 nm, λ em = 377 nm), d: EtOH (λ ex = 339 nm, λ em = 425 nm), e: MeCN (λ ex = 357 nm, λ em = 386 nm), f: acetone (λ ex = 357 nm, λ em = 383 nm), g: EtOAc (λ ex = 357 nm, λ em = 386 nm), h: DMF (λ ex = 346 nm, λ em = 444 nm), i: DMSO (λ ex = 346 nm, λ em = 441 nm). Slit width = 2.5/2.5 nm.

3. Measurement of the fluorescence quantum yield

Figure S3 Measurement of the fluorescence quantum yields (Φ f) of **4-AHBI**. **4-AHBI** were determined in CH₂Cl₂ with solvent refractive index correction. Quinine sulfate in 1.0 M H₂SO₄ was used as the reference (Φ f = 54%) at an excitation wavelength of 340 nm. The fluorescence quantum yield was calculated by the following equation: $\Phi_x = \Phi_s (F_x/F_s)(A_s/A_x)(n_x/n_s)^2$. Where x and s indicate the **4-AHBI** and quinine sulfate, respectively, F is the area of the fluorescence peak, A is the optical density at the excitation wavelength and n is the refractive index of the solvent.

4. Measurement of the LoD for 4-AHBI

Figure S4 Measurement of the LoD for **4-AHBI** to triphosgene. a) The emission intensities at 386 nm vs triphosgene concentration. Equation: y = 2416.7x-40.195, $R^2 = 0.9948$; b) Ten times of the blank experiment to evaluate the standard deviation σ (0.06728). The triphosgene detection limit was determined to be 0.08 nM (LoD = $3\sigma/k$, where σ is the standard deviation of the blank experiment, and k is the slope of the relationship between the emission intensities and triphosgene concentration.

5. Fluorescence spectra of 4-AHBI with triphosgene in the presence of interfering compounds

Figure S5 Fluorescence spectra of **4-AHBI** (10 μ M) in CH₂Cl₂ with triphosgene (3.5 μ M) in the presence of various analytes (5 μ M). λ ex = 357 nm.

Interferents compounds (5 μM)	Triphosgene added (µM)	Triphosgene found (µM)	Recovery
(COCI) ₂	3.5	2.8	80.1%
CH₃COCI	3.5	2.7	77.1%
SOCI ₂	3.5	3.1	88.6%
TsCl	3.5	2.8	79.6%
DCP	3.5	3.1	88.6%
HOAc	3.5	3.2	91.4%
POCI ₃	3.5	3.9	111.4%
SO_2CI_2	3.5	3.0	84.3%
HCI	3.5	3.1	88.6%

6. Table S1 Determination of triphosgene in the presence of interfering compounds

7. Exploration of the sensing mechanism

The reaction mixture was analysed by HPLC with a High-resolution mass spectra (HRMS) on Agilent Technologies 6530 Accurate mass Q-TOF LC/MS using ESI as ion source. A minor peak at 1.959 min corresponded with the remnant **4-AHBI** (HRMS: $[M+H]^+$: calcd for $C_{13}H_{12}N_3O$: 226.0975, found: 226.0975.). A major peak at 3.812 min was obviously obtained and the HRMS spectrum showed the m/z 252.0776, which should be the single sensing product **4-AHBI-CO** (for $C_{14}H_{10}N_3O_2$: M+H⁺: calculated 252.0768).

The sensing product **4-AHBI-CO** was synthesized as follows: **4-AHBI** (0.113 g, 0.5 mmol) was stirred and dissolved in dry CH_2CI_2 (25 mL) at 0 °C, then triphosgene (0.15 g,

0.5 mmol) in dry CH_2CI_2 (10 mL) was added over a period of 10 min. Then the mixture was continually stirred at 0 °C until the completion of the reaction. Saturated NaHCO₃ aqueous solution was added into the mixture and extracted with CH_2CI_2 (20 mL × 2). The organic phase was collected, dried over anhydrous Na_2SO_4 and evaporated to give the crude product. The crude product was further purified by column chromatography (ethyl acetate : petroleum ether = 1 : 5) to give the sensing product (0.096 g, yield 78%) as a white solid.

Figure S6 HPLC chromatogram of the reaction mixture (up) and HRMS spectrum of the peak at 1.959 min (middle) and 3.812 min (down).

Figure S8 HRMS copy of 4-AHBI-CO.

8. ¹H NMR, ¹³C NMR and HRMS copies of 4-AHBI

Figure S9 ¹H NMR copy of 4-AHBI

Figure S10¹³C NMR copy of 4-AHBI

Figure S11 HRMS copy of 4-AHBI