Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Supporting information

Revisiting conventional noncovalent interactions towards a complete understanding: From tetrel to pnictogen, chalcogen, and halogen bond

Cam-Tu Phan Dang^{1,2*}, Nguyen Minh Tam³, Thanh-Nam Huynh⁴, Nguyen Tien Trung⁵

¹Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam

²Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam

³Faculty of Basic Sciences, University of Phan Thiet, 225 Nguyen Thong, Phan Thiet City, Binh Thuan, Viet Nam

⁴Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344 Germany

⁵Laboratory of Computational Chemistry and Modelling (LCCM), Quy Nhon University, Quy Nhon City 590000, Vietnam

*Corresponding author: phandcamtu@duytan.edu.vn / phancamtu9982@gmail.com.vn

Figure S1. Topological graphs with density at MP2/aDZ of investigated complexes

c) *Eclipsed* conformer of H₃N-SF₂ d) Hydrogen bonded-structure of H₃N-ClF Figure S2. Secondary structures of investigated complexes at MP2/aTZ level Two other conformers of H_3N -SiF₄, including *equatorial* and *square pyramidal* geometries, stated by Chehayber *et al.*¹, were also reoptimized at MP2/aTZ high-level of theory to accurately investigate their stabilities and electronic properties (cf. Figure S2). Their binding energies are positive, 5.10 and 11.92 kJ.mol⁻¹, respectively, at MP2/aTZ. Both *equatorial* and *square pyramidal conformer* occur an imaginary frequency of -43.14 cm⁻¹ and -125.83 cm⁻¹.

The *hydrogen-bonded* conformers (**II** and **III**) of NH₃-PF₃ both are less stable than H₃N-PF₃ PniB one. Indeed, their E_b+ZPE+BSSE values at MP2/aTZ are slightly negative, i.e. -0.56 and -1.64 kJ.mol⁻¹, respectively. The AIM analyses show the conformer **II** exhibits three intermolecular interactions, including a PF…N HalB and two NH…F hydrogen bonds. Their $\rho(rc)$ values at BCPs are 1.9×10^{-3} a.u, 5.8×10^{-3} a.u, and 5.8×10^{-3} a.u, respectively; and all significantly lower than that of N…P PniB (18.5 × 10⁻³ a.u). The conformer **III** occurs two imaginary frequencies (-49.49 and -49.47 cm⁻¹) at MP2/aTZ.

The *eclipsed* structure of H_3N-SF_2 model exhibits the stabilization energy of -21.2 kJ.mol⁻¹ at MP2/aTZ, reasonably approximate to that of the *staggered* one (-21.1 kJ.mol⁻¹). However, one imaginary frequency is found in the *eclipsed* conformer (-57.15 cm⁻¹), where H_{α} atom of NH₃ vibrates towards the outside of the C_s symmetry plane. Thus, the *eclipsed* structure could be recognized as a transition state moving towards the more stable *staggered* conformer.

The H₃N-ClF *hydrogen-bonded* structure exhibits an binding energy of -1.38 kJ.mol⁻¹ at MP2/aTZ.

^{1.} Chehayber JM, Nagy ST, Lin CS. Ab initio studies of complexes between SiF4 and ammonia. *Can J Chem*. 1984;62(1):27-31. doi:10.1139/v84-006

Isolated monomers	V _{s,min}	V _{s,max}
NH ₃	-37.267252	26.530416
		26.516305
		26.524880
CIF*	-10.899116	47.815127
SF ₂	-11.484665	45.237921
	-11.467289	45.232004
PF ₃	-11.311841	39.768458
	-11.267542	39.654171
	-11.269485	39.613856
SiF ₄	-9.805767	57.264031
	-9.776024	57.161980
	-9.804366	56.949983
	-9.788675	57.243163

Table S1. $V_{s,min}$ and $V_{s,max}$ values (kcal.mol⁻¹) of isolated monomers derived from Multiwfn at MP2/aTZ

* This structure exists maxima points around the F atom, which form a ring in perpendicular to the F-Cl bond

Table S2. Contribution of different components to interaction energies of noncovalentcomplexes using high order SAPT2+(3)dMP2 approach (kJ.mol⁻¹) at aTZ

	SiF ₄ -NH ₃ TtB	PF ₃ -NH ₃ PniB	SF ₂ -NH ₃ ChalB	CIF-NH ₃ HalB
Electrostatic	-330.66	-50.89	-103.60	-162.05
Induction	-135.79	-13.27	-45.35	-103.41
Dispersion	-62.00	-19.89	-31.90	-40.28
Exchange	402.81	65.49	150.34	257.93
$E_{elst}/E_{int}(SAPT)$	3.39	3.40	2.74	2.63
$E_{ind}/E_{int}(SAPT)$	2.16	1.49	0.71	1.08
$E_{disp}/E_{int}(SAPT)$	0.84	1.05	1.07	0.49
$E_{exch}/E_{int}(SAPT)$	-5.39	-4.93	-3.53	-3.21