Electronic Supplementary Information

Isolation and Total Synthesis of Dysidone A: A New Piperidone

Alkaloid from the Marine Sponge *Dysidea* sp.

Yu Lei, Boao Li, Xiaojian Liao, Xiwen Xing, Pengju Feng,* Bingxin Zhao* and Shihai Xu*

Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China. *Email: pfeng@jnu.edu.cn

*Email: zbx840622@163.com

*Email: txush@jnu.edu.cn

Contents

Procedure for the total synthesis and analytical data of related compounds	2
Figure S1 UV spectrum of natural dysidone A (1) in CDCl ₃	4
Figure S2 IR spectrum of natural dysidone A (1) in CDCl ₃	4
Figure S3 HRESIMS spectrum of natural dysidone A (1) in CDCl ₃	4
Figure S4 ¹ H NMR spectrum of natural dysidone A (1) in CDCl ₃	5
Figure S5 ¹³ C NMR spectrum of natural dysidone A (1) in CDCl ₃	5
Figure S6 ¹ H- ¹ H COSY spectrum of natural dysidone A (1) in CDCl ₃	6
Figure S7 HSQC spectrum of natural dysidone A (1) in CDCl ₃	6
Figure S8 HMBC spectrum of natural dysidone A (1) in CDCl ₃	7
Figure S9 NOESY spectrum of natural dysidone A (1) in $CDCI_3$	7
Figure S10 ¹ H NMR spectra of natural and synthetic 1 in CDCl ₃	8
Figure S11 13 C NMR spectra of natural and synthetic 1 in CDCl ₃	8

Procedure for the total synthesis and analytical data of related compounds:

1-(4-methoxybenzyl) piperidine (1a): Dissolve piperidine (1.7 g, 20 mmol, 1.0 equiv) and *N*, *N*-diisopropylethylamine (3.88 g, 30 mmol, 1.5 equiv) in dichloromethane, the solution was stirred at 0 °C for 5 min, and p-methoxybenzyl chloride (3.13 g, 20 mmol, 1.0 equiv) was then added and resulting the solution was reacted at room temperature for 12 h. The resulting reaction solution was washed with saturated brine, and the aqueous layer was extracted three times with dichloromethane, the organic layer was dried over anhydrous. The residue was purified by flash chromatography (silica gel, petroleum / ethyl acetate = 15:1) to afford the *N*-(4-methoxybenzyl) piperidine (3.7 g, 72.8 mmoL, 90.9 %) as a white liquid. Physical properties and spectroscopic data in accordance with the literature 1¹. m.p, 182-183 °C. ¹H NMR (300M, CDCl₃): δ 7.22 (d, *J* = 8.6 Hz, 2H), 6.84 (d, *J* = 8.6 Hz, 2H), 3.80 (s, 3H), 3.41 (s, 2H), 2.35 (s, 4H), 1.56 (m, 4H), 1.47-1.30 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 158.5, 130.5, 130.4, 113.4, 63.2, 55.2, 54.3, 26.0, 24.4; HRESIMS *m/z*: 206.1535 [M + H] + (calcd for C₁₃H₂₀NO, 206.1539).

1-(4-Methoxybenzyl) piperidine-2,3-dione (1b): To a solution of **1a** (0.25 g, 1.2 mmol, 1.0 equiv) in THF (80 mL) was added PIDA (0.77 g, 2.4 mmol, 2.0 equiv) and I₂ (0.61 g, 1.2 mmol, 2.0 equiv), and the reaction mixture was at RT for 6 h. PIDA and then additional PIDA (0.39 g) was added for another 12 hours. then the reaction was quenched with saturated sodium thiosulfate (48 mL), extracted with EtOAc, dried over Na₂SO₄. The residue was purified by flash chromatography (silica gel, petroleum / ethyl acetate = 5:1) to afford (0.13 g, 45.6 %) of **1b** as a white liquid. Physical properties and spectroscopic data in accordance with the literature 2². m.p. 108-109 °C; ¹H NMR (300M, CDCl₃): δ 7.15 (d, *J* = 8.7 Hz, 2H), 6.78 (d, *J* = 8.7 Hz, 2H), 4.53 (s, 2H), 3.71 (s, 3H), 3.38 (t, *J* = 6.0 Hz, 2H), 2.63 (t, *J* = 6.9 Hz, 2H), 2.08-2.00 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 191.7, 159.2, 157.7, 129.7, 127.6, 114.0, 55.1, 50.3, 46.4, 38.4, 21.5. HRESIMS *m/z*: 234.1129 [M + H] + (calcd for C₁₃H₁₆NO₃ 234.1125).

Ethyl (*Z*)-2-[1-[(4-methoxybenzyl) methyl]-2-oxo-3-piperidinylidene] acetate (1c): Dissolve NaH (0.08 g, 3.2 mmol, 1.6 equiv) in dry DMF (10 mL), the solution was stirred at 0 °C, and triethylphosphonoacetate (0.673 g, 3.0 mmol, 1.5 equiv) was then added. 15 minutes later, **1b** (0.466 g, 2.0 mmol, 1.0 equiv) was dissolved in THF and added dropwise to the mixture reaction and resulting the solution was reacted at RT for 12 h. TLC followed the reaction. Upon stirring for 12 h, the reaction was quenched with water and extracted with DCM, dried over Na₂SO₄. The residue was purified by flash chromatography (silica gel, petroleum / ethyl acetate = 1:1) to afford (0.23 g, 76.0 %) of **1c** as a white liquid. Analytical data for **1c**: m.p, 166-167 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.06 (d, *J* = 8.7 Hz, 2H), 6.69 (d, *J* = 8.7 Hz, 2H), 5.85 (s, 1H), 4.41 (s, 2H), 4.16 (q, *J* = 7.2 Hz, 2H), 3.63 (s, 3H), 3.10 (t, *J* = 6.0 Hz, 2H), 3.39 (t, *J* = 6.0 Hz, 2H), 1.75-1.67 (m, 2H), 1.20 (t, *J* = 7.1, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 167.6, 161.8, 158.6, 135.2, 129.2, 128.4, 128.5, 113.5, 60.4, 54.8, 49.2, 46.5, 29.7, 22.2, 13.7. HRESIMS *m/z*: 304.1537 [M + H] ⁺ (calcd for C₁₇H₂₂NO₄ 304.1543).

Dysidone B (1d): To a solution of **1c** (0.21 g, 0.7 mmoL, 1.0 equiv) in *t*-Butanol and water mixture (4:1 volume ratio), added cerium ammonium nitrate (0.15 g, 0.9 mmoL, 1.3 equiv) to the reaction mixture. The mixture was stirred at RT for 1 h and then diluted with 10 % NaCl, extracted with EtOAc, dried over Na₂SO₄. The residue was purified by flash chromatography (silica gel, ethyl acetate = 0:100) to afford (0.06 g, 43.0 %) of **1d** as a white liquid. Analytical data for **1d**: m.p. 168-169 °C; ¹H NMR (300M, CDCl₃): δ 6.86 (s, 1H), 5.97 (s, 1H), 4.23 (q, *J* = 7.2 Hz, 2H), 3.35-3.30 (m, 2H), 2.56-2.52(m, 2H), 1.92-1.83(m, 2H), 1.29 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75MHz, CDCl₃): δ 168.0, 164.1, 134.7, 127.4, 60.9, 42.1, 29.8, 22.6, 13.9; HRESIMS *m/z*: 184.0962 [M + H] ⁺ (calcd for C₉H₁₄NO₃ 184.0968).

Synthetic dysidone A (1): Dissolved **1d** (0.13 g, 0.7 mmoL, 1.0 equiv) in dry dichloromethane (3 mL), under nitrogen atmosphere was added, then dissolve diisobutylaluminum hydride (1 mL) in dry dichloromethane (1 mL), then the temperature was lowered to -78 °C. TLC followed the reaction. H₂O, 1M sodium hydroxide and water in sequence, with an interval of 17 seconds between each addition, the mixture was diluted with H₂O, extracted with CH₂Cl₂, dried over Na₂SO₄. The residue was purified by HPLC (3 mL/min, MeOH: H₂O = 10: 90, 210 nm) to afford (0.09 g, 78.0 %) of **1** as a light-yellow oil. Analytical data for **1**: m.p., 170-171 °C; ¹H NMR (300M, CDCl₃): δ 6.19 (m, 1H), 5.98 (brs, 1H), 4.33 (d, *J* = 6.1 Hz, 2H), 3.38 (m, 2H), 2.53 (m, 2H), 1.88 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 167.1, 141.6, 130.8, 59.4, 42.7, 31.9, 22.9; HRESIMS *m/z*: 164.0684 [M + Na] + (calcd for C₇H₁₁NO₂Na, 164.0687).

References

1. V. Werner, M. Ellwart, A. J. Wagner and P. Knochel, Preparation of tertiary amines by the reaction of Iminium lons derived from unsymmetrical aminals with zinc and magnesium organometallics, *Org. Lett.*, 2015, **17**, 2026-2029.

2. J. Romero-Ibanez, S. Cruz-Gregorio, L. Quintero and F. Sartillo-Piscil, Concise and environmentally friendly asymmetric total synthesis of the putative structure of a biologically active 3-hydroxy-2-piperidone alkaloid, *Synthesis*, 2018, **50**, 2878-2886.

Figure S1 UV spectrum of natural dysidone A (1) in CDCl₃

Figure S2 IR spectrum of natural dysidone A (1) in CDCl₃

止MS峰1:	+ 扫描 (rt: 0.095-0.145 min)	扣除														
m/z / +=	饱和 + Abund + 丰度百分比	(归一化) # 最大丰度 #	Z -12	种类 中科	云签 4 分子式和离子种类	+1 误差(ppm) +1	m/z (prod.) 🖶 Z (p	rod.) 中离子		式由丢失质	量中离子类型	2.40				
96.0803	83546.32	83546.32														
124.0756	571541.81	571541.81														
164.0684	1321475.5	1321475.5	1	(M+Na)+	([C7 H11 N O2]+Na)-	+ -1.4										
165.0714	107437.64	107437.64	1	(M+Na)+	([C7 H11 N O2]+Na)-	+ -0.26										
226.0386	77940.46	77940.46														
240.232	151154.69	151154.69														
242.2847	1386545.62	1386545.62	1													
243.2876	236994.58	236994.58	1													
266.1727	159505.72	159505.72														
271,2742	79318.08	79318.08							_	_						
山 MS 质谱	图结果 (zoomed)															
	A A +4 +8 A +4	0.0 1 -	•		10 0/ % 1% J	15 /3										
K. 44 +		00111		🔜 рт п	70 70 % KA IL	a 🗇										
x10 6 +ESI	1 扫描(rt: 0.095-0.145 min, 4	: 扫描数) Frag=175.0V2	LBA-	11-p.d 扣除												
2.4-																
2.3-																
2.2-																
2-																
1.9-					+											
1.8-					+2(4)											
1.7-					02]											
1.6-					1 1											
1.5-					1 06											
1.4-					164											
1.2-																
1.1-																
1-																
0.9-																
0.8-																
0.7-					*											
0.6-					-Ka											
0.5-					02											
0.3-					11 3											
0.2-					5.07 8											
0.1-					16											
0-			_													
13	32 134 136 138 140 142 1	44 146 148 150 152	15	4 156 158	160 162 164 166 168	170 172 174	176 178 180	182 184	186 188	190 192 19	4 196 198	200 202 204	206 208	210 212	214 216 2	18 220

Figure S3 HRESIMS spectrum of natural dysidone A (1) in CDCl₃

 $\begin{array}{c} -5.03\\ -5$

6.17 6.17 6.19 6.19 6.19 6.19 6.19 6.19 6.18 6.18 6.18 6.18 6.17 6.18 6.17 6.17 6.18

Figure S5 ¹³C NMR spectrum of natural dysidone A (1) in CDCl₃

Figure S7 HSQC spectrum of natural dysidone A (1) in CDCl_3

Figure S9 NOESY spectrum of natural dysidone A (1) in CDCl₃

Figure S11 $^{\rm 13}{\rm C}$ NMR spectra of natural and synthetic 1 in CDCl_3