Supporting information

Modification of mixed-nitrogen anions configuration for accelerate lithium ions transport on the LiFePO₄ electrode

Jin-young Choi^a, Hye-min Kim^{*b}, Yu-sung Kim^a, In-sik Lee^a, Byung-chul Cha^b and Dae-wook Kim^{*a}

a) Advanced Manufacturing Process R&D Group, Ulsan Regional Division, Korea Institute of Industrial Technology (KITECH), 55, Jongga-ro, Jung-gu, Ulsan, 44313, Korea

b) Department of Materials Chemistry, Shinshu University, 4-17-1, Wakasato, Nagano, 3808553, Japan

*Corresponding to Author: dwkim@kitech.re.kr, hmkim545@gmail.com

	Plasma generation conditions			Ion implantation conditions			
Sample	Process pressure (torr)	RF power (W)	N ₂ gas flow (sccm)	Implantation energy (kV)	Pulse width (µs)	Frequency (Hz)	Implantation time (s)
LFP-N5	$20 10^{3}$	200	20	5	2.0	500	(0)
LFP-N7	2.0 x 10 ⁻³	300	30	7	3.0	500	60

Table. S1 Details of PIII process conditions.

Fig. S1 FE-SEM EDS mapping images for Fe, P, O and N of (a) LFP-N5 and (b) LFP-N7.

Fig. S2 Rietveld refinement patterns of (a) LFP and (b) LFP-N5.

Table S2. Cell parameters of LFP, LFP-N5 and LFP-N7 obtained from Rietveld refinement of XRD.

	Cell parameter								
	а	b	с	volume (Å)	σ	β	γ	R_p	R_{wp}
LFP	10.3176	6.0017	4.692	290.542	90	90	90	5.38	8.37
LFP-N5	10.3167	6.0009	4.6893	290.314	90	90	90	5.32	8.11
LFP-N7	10.3124	5.9973	4.6863	289.829	90	90	90	5.87	8.52

Fig. S3 Li 1s and Fe 2p XPS core-level spectra of LFP, LFP-N5 and LFP-N7.

Fig. S4 Galvanostatic charge-discharge curves of LFP and LFP-N5 at varies C-rate.

Fig. S5 Relationship between the C-rate and voltage gap of the charge/discharge voltage plateau.

Table S3. EIS	kinetic parameters	of LFP, LFP-N5	and LFP-N7 electrode.
---------------	--------------------	----------------	-----------------------

	R_{sf} (ohm)	R_{ct} (ohm)	$D_{Li} ({ m cm}^2{ m s}^{-1})$
LFP	3.34	123.1	3.74×10^{-14}
LFP-N5	3.57	104.6	5.43×10^{-14}
LFP-N7	4.19	31.5	3.46×10^{-13}

Sample	Method	Performance	Ref.
Cl-doped LiFePO ₄ /C	solid-state reaction	105.3 mAh g ⁻¹ @ 10C	[1]
LiFe(PO ₄) _{0.9} F _{0.3} /C	co-precipitation reaction followed by high-temperature treatment	110 mAhg g ⁻¹ @ 10C	[2]
LiFePO _{3.938} F _{0.062} /C	solid-state reaction	102.3 mAh g ⁻¹ @ 10C	[3]
S-doped LiFePO ₄	solvothermal method	112.7 mAhg g ⁻¹ @ 10C	[4]
F-doped LiFePO ₄ @N/B/F- doped carbon	hydrothermal method	116.4 mAh g ⁻¹ @ 5 C 71.3 mAh g ⁻¹ @15C	[5]
Cl-doped LiFePO ₄ /C	carbothermal reduction route	110 mAh g ⁻¹ @ 10C	[6]
LiFePO _x N _y thin films	Reactive magnetron sputter deposition	100 mAh g ⁻¹ @ 10C	[7]
S-doped LiFePO ₄ @N/S-doped C	solvothermal method	121.26 mAh g ⁻¹ @ 5 C	[8]
Li _{0.94} FePO _{3.84} N _{0.16}	sol-gel approaches- thermal nitridation	$\sim 60 \text{ mAh } \text{g}^{-1} @ 5 \text{ C}$	[9]
LFP-N7	plasma-immersion ion implantation (PIII)	128 mAhg g ⁻¹ @10C	This work

Table S4 Rate performance of anion surface modification of LFP.

References

- H. Liu, S.-h. Luo, S.-x. Yan, Y.-f. Wang, Q. Wang, M.-q. Li and Y.-h. Zhang, J. Electroanal. Chem., 2019, 850, 113434.
- 2. C. Gao, J. Zhou, G. Liu and L. Wang, J. Alloys Compd., 2017, 727, 501-513.
- Z. Yan, D. Huang, X. Fan, F. Zheng, Q. Pan, Z. Ma, H. Wang, Y. Huang and Q. Li, Front. Mater., 2020, 6, 341.
- 4. K. Okada, I. Kimura and K. Machida, RSC Adv., 2018, 8, 5848-5853.
- 5. Y. Meng, Y. Li, J. Xia, Q. Hu, X. Ke, G. Ren and F. Zhu, Appl. Surf. Sci., 2019, 476, 761-768.
- 6. C. Sun, Y. Zhang, X. Zhang and Z. Zhou, J. Power Sources, 2010, 195, 3680-3683.
- 7. K.-F. Chiu, S.-H. Su, H.-J. Leu and Y. R. Jheng, ECS Trans., 2016, 73, 27.
- 8. B. Zhang, S. Wang, L. Liu, J. Wang, W. Liu and J. Yang, Nanotechnology, 2022, 33, 405601.
- 9. S. F. Mayer, C. de la Calle, M. T. Fernández-Díaz, J. M. Amarilla and J. A. Alonso, RSC Adv., 2022, 12, 3696-3707.