RSC Advances

(Electronic Supplementary Information)

Functionalization of Fe₃O₄@SiO₂ nanoparticles with Cu(I)thiosemicarbazone complex as a robust and efficient heterogeneous nanocatalyst for N-arylation of Nheterocycles with aryl halides

Narjes Kaviani,^a Somayeh Behrouz,^{b*} Abbas Ali Jafari,^{a*} Mohammad Navid Soltani Rad^b

 ^a Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
 ^b Department of Chemistry, Shiraz University of Technology, Shiraz 71555-313, Iran
 * Corresponding author. Tel.: +98 71 3735 4500; fax: +98 71 3735 4520; e-mail address: behrouz@sutech.ac.ir (S. Behrouz), Jafari@yazd.ac.ir (Abbas Ali Jafari)

Content	Page
Data of synthesized compounds	3
¹ HNMR and ¹³ CNMR of 3a	8
¹ HNMR and ¹³ CNMR of 3b	9
¹ HNMR and ¹³ CNMR of 3c	10
¹ HNMR and ¹³ CNMR of 3d	11
¹ HNMR and ¹³ CNMR of 3e	12
¹ HNMR and ¹³ CNMR of 3f	13
¹ HNMR and ¹³ CNMR of 3g	14
¹ HNMR and ¹³ CNMR of 3h	15
¹ HNMR and ¹³ CNMR of 3i	16
¹ HNMR and ¹³ CNMR of 3 j	17
¹ HNMR and ¹³ CNMR of 3k	18
¹ HNMR and ¹³ CNMR of 3 I	19
¹ HNMR and ¹³ CNMR of 3m	20
¹ HNMR and ¹³ CNMR of 3n	21
¹ HNMR and ¹³ CNMR of 30	22

Table of Content

1-phenylpyrimidine-2,4(1H,3H)-dione (3a)

Column chromatography on silica gel (EtOAc:*n*-hexane, 2:1) afforded the product as a white solid; yield: 67%; mp 241-243 °C (Lit.¹ 242-244 °C); ¹H NMR (250 MHz, DMSO-d₆): $\delta_{ppm} = 5.37$ (d, J = 7.7 Hz, 1H, C(5)-H of uracil), 7.28-7.47 (complex, 4H, aryl, C(6)-H of uracil), 7.76 (d, J = 7.2 Hz, 1H, C(6)-H, uracil), 11.16 (s, 1H, N(3)-H of uracil); ¹³C NMR (62.5 MHz, DMSO-d₆): $\delta_{ppm} = 102.2$, 121.9, 125.4, 128.4, 132.2, 143.6, 153.8, 161.4; IR (KBr): 3170, 3045, 1732, 1695, 1601, 1448 cm⁻¹.

1-(4-methoxyphenyl)pyrimidine-2,4(1H,3H)-dione (**3b**)

Column chromatography on silica gel (EtOAc:*n*-hexane, 2:1) afforded the product as a white solid; yield: 65%; mp 227-229 °C (Lit.¹ 228-229 °C); ¹H NMR (250 MHz, DMSO-d₆): $\delta_{ppm} = 3.70$ (s, 3H, OCH₃), 5.54 (d, J = 7.8 Hz, 1H, C(5)-H of uracil), 6.84 (d, J = 8.6 Hz, 2H, aryl), 7.14 (d, J = 8.6Hz, 2H, aryl), 7.69 (d, J = 7.8 Hz, 1H, C(6)-H of uracil), 11.17 (s, 1H, N(3)-H of uracil); ¹³C NMR (62.5 MHz, DMSO-d₆): $\delta_{ppm} = 57.7$, 102.8, 115.5, 123.4, 125.4, 143.8, 152.4, 157.4, 162.0; IR (KBr): 3151, 3010, 2953, 1729, 1685, 1510, 1449, 1242 cm⁻¹.

5-methyl-1-phenylpyrimidine-2,4(1H,3H)-dione (3c)

Column chromatography on silica gel (EtOAc:*n*-hexane, 2:1) afforded the product as a white solid; yield: 59%; mp 199-201 °C (Lit.¹ 198-200 °C); ¹H NMR (250 MHz, DMSO-d₆): $\delta_{ppm} = 1.96$ (s, 3H, =CCH₃), 7.54-7.61 (m, 2H, aryl), 7.68-7.74 (m, 1H, aryl), 8.00-8.03 (m, 2H, aryl), 8.10 (s, 1H, C(6)-H of thymine), 11.17 (s, 1H, N(3)-H of thymine); ¹³C NMR (62.5 MHz, DMSO-d₆): $\delta_{ppm} =$ 14.6, 111.6, 122.7, 125.0, 129.5, 132.7, 134.9, 153.2, 164.8; IR (KBr): 3185, 3072, 2958, 1726, 1701, 1598, 1469 cm⁻¹.

5-methyl-1-p-tolylpyrimidine-2,4(1H,3H)-dione (3d)

Column chromatography on silica gel (EtOAc:*n*-hexane, 2:1) afforded the product as a white solid; yield: 54%; mp 217-219 °C (Lit.¹ 216-217 °C); ¹H NMR (250 MHz, DMSO-d₆): $\delta_{ppm} = 2.05$ (s, 3H, =CCH₃), 2.72 (s, 3H, OCH₃), 6.89 (d, *J* = 8.8 Hz, 2H, aryl), 7.60 (d, *J* = 9.0 Hz, 2H, aryl), 8.48 (s, 1H, C(6)-H of thymine), 11.86 (s, 1H, N(3)-H of thymine); ¹³C NMR (62.5 MHz, DMSO-d₆): δ_{ppm} = 16.4, 25.5, 112.8, 122.9, 128.5, 129.5, 135.9, 136.9, 154.6, 164.3; IR (KBr): 3178, 3065, 2969, 1723, 1697, 1602, 1479 cm⁻¹.

1,3-dimethyl-7-phenyl-1H-purine-2,6(3H,7H)-dione (**3e**)

Column chromatography on silica gel (EtOAc:*n*-hexane, 2:1) afforded the product as a white solid; yield: 77%; mp 196-198 °C (Lit.² 195.5 °C); ¹H NMR (250 MHz, CDCl₃): $\delta_{ppm} = 3.33$ (s, 3H, N(1)-CH₃), 3.59 (s, 3H, N(1)-CH₃), 7.43 (br s, 5H, aryl), 7.67 (s, 1H, C(8)-H of theophylline); ¹³C NMR (62.5 MHz, CDCl₃): $\delta_{ppm} = 27.7$, 29.7, 105.95 126.1, 128.1, 129.1, 136.0, 141.4, 150.3, 152.4, 156.7; IR (KBr): 3047, 2978, 1715, 1701, 1654, 1474 cm⁻¹.

7-(4-methoxyphenyl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione (3f)

Column chromatography on silica gel (EtOAc:*n*-hexane, 2:1) afforded the product as a white foam (Lit.³); yield: 74%; ¹H NMR (250 MHz, CDCl₃): $\delta_{ppm} = 3.32$ (s, 3H, N(1)-CH₃), 3.58 (s, 3H, N(1)-CH₃), 3.79 (s, 3H, OCH₃), 6.92 (d, *J* = 9.0 Hz, 2H, aryl), 7.33 (d, *J* = 9.0 Hz, 2H, aryl), 7.62 (s, 1H, C(8)-H of theophylline); ¹³C NMR (62.5 MHz, CDCl₃): $\delta_{ppm} = 28.1, 29.9, 55.3, 107.2, 114.9, 125.7, 127.9, 142.7, 150.5, 152.7, 155.6, 161.7; IR (KBr): 3061, 2947, 1719, 1702, 1659, 1468, 1236 cm⁻¹.$ *3*,*7-dimethyl-1-phenyl-1H-purine-2,6(3H,7H)-dione*(**3g**)

Column chromatography on silica gel (EtOAc:*n*-hexane, 2:1) afforded the product as a white solid; yield: 78%; mp 218-220 °C (Lit.⁴ 218.5 °C); ¹H NMR (250 MHz, CDCl₃): $\delta_{ppm} = 3.61$ (s, 3H, N(3)-CH₃), 3.94 (s, 3H, N(7)-CH₃), 7.22-7.26 (m, 2H, aryl), 7.44-7.50 (m, 3H, aryl), 7.55 (s, 1H, C(8)-H of theobromine); ¹³C NMR (62.5 MHz, CDCl₃): $\delta_{ppm} = 27.2$, 31.2, 106.4, 123.2, 125.8, 129.2, 130.4, 146.5, 148.1, 150.7, 165.8; IR (KBr): 3115, 2949, 1815, 1701, 1653, 1605, 1448 cm⁻¹. *1-(4-methoxyphenyl)-3,7-dimethyl-1H-purine-2,6(3H,7H)-dione* (**3h**)

Column chromatography on silica gel (EtOAc:*n*-hexane, 2:1) afforded the product as a white solid; yield: 76%; mp 181-183 °C (Lit.⁴ 182.5 °C); ¹H NMR (250 MHz, CDCl₃): $\delta_{ppm} = 3.62$ (s, 3H, N(3)-

CH₃), 3.82 (s, 3H, N(7)-CH₃), 3.95 (s, 3H, OCH₃), 6.97-7.02 (m, 2H, aryl), 7.12-7.16 (m, 2H, aryl),

7.53 (s, 1H, C(8)-H of the obromine); ¹³C NMR (62.5 MHz, CDCl₃): $\delta_{ppm} = 28.3, 30.2, 53.9, 105.4,$ 115.1, 122.9, 124.2, 144.9, 149.2, 151.3, 157.5, 164.7; IR (KBr): 3130, 2979, 2839, 1869, 1708, 1663, 1602, 1469, 1243 cm⁻¹.

1-(4-methoxyphenyl)-1H-indole (3i)

Column chromatography on silica gel (EtOAc:*n*-hexane, 1:1) afforded the product as a white solid; yield: 88%; mp 56-58 °C (Lit.⁵ 57-59 °C); ¹H NMR (250 MHz, CDCl₃): $\delta_{ppm} = 3.71$ (s, 3H, OCH₃), 6.58 (br s, 1H, C(3)-H of indole), 6.73 (d, J = 7.5 Hz, 2H, aryl), 6.93 (d, J = 5.0 Hz, 2H, aryl), 7.09m (d, J = 5.0 Hz, 2H, aryl), 7.19 (br s, 2H, aryl), 7.83 (br s, 1H, C(2)-H of indole); ¹³C NMR (62.5 MHz, CDCl₃): $\delta_{ppm} = 55.5$, 102.4, 110.5, 114.5, 120.2, 121.6, 122.5, 126.3, 128.6, 129.3, 133.1, 136.8, 158.8; IR (KBr): 3050, 2975, 1669, 1597, 1463, 1238 cm⁻¹.

1-(2-methoxyphenyl)-1H-indole (**3j**)

Column chromatography on silica gel (EtOAc:*n*-hexane, 1:1) afforded the product as a colorless oil (Lit.⁵); yield: 73%; ¹H NMR (250 MHz, CDCl₃): $\delta_{ppm} = 3.72$ (s, 3H, OCH₃), 6.67-6.74 (complex, 5H, aryl, C(3)-H of indole), 7.12-7.19 (m, 4H, aryl), 7.60 (br s, 1H, C(2)-H of indole); ¹³C NMR (62.5 MHz, CDCl₃): $\delta_{ppm} = 56.1$, 102.6, 110.1, 114.5, 119.1, 120.4, 121.8, 122.5, 123.2, 125.9, 127.0, 128.6, 130.6, 144.5, 146.2; IR (film): 3079, 2959, 1664, 1590, 1470, 1245 cm⁻¹.

1-phenyl-1H-benzo[d]imidazole (3k)

Column chromatography on silica gel (EtOAc:*n*-hexane, 1:1) afforded the product as a white solid; yield: 92%; mp 91-93 °C (Lit.⁶ 94-95 °C); ¹H NMR (250 MHz, CDCl₃): $\delta_{ppm} = 7.11-7.28$ (m, 5H, aryl), 7.48-7.63 (m, 4H, aryl), 8.31 (s, 1H, C(2)-H of benzimidazole); ¹³C NMR (62.5 MHz, CDCl₃): $\delta_{ppm} = 110.9$, 120.5, 122.6, 123.4, 124.5, 128.1, 129.1, 133.7, 137.2, 142.1, 144.9; IR (KBr): 3015, 1645,1600, 1497 cm⁻¹.

1-(naphthalen-1-yl)-1H-imidazole (31)

Column chromatography on silica gel (EtOAc:*n*-hexane, 1:1) afforded the product as a creamy solid; yield: 82%; mp 62-64 °C (Lit.⁷ 63-64 °C); ¹H NMR (250 MHz, CDCl₃): $\delta_{ppm} = 6.68-6.76$ (m, 2H, aryl), 6.85 (s, 1H, C(5)-H of imidazole), 7.09-7.11 (m, 2H, aryl), 7.12 (s, 1H, C(4)-H of imidazole), 7.22-7.25 (m, 2H, aryl), 7.41-7.52 (complex, 2H, aryl, C(2)-H of imidazole); ¹³C NMR

(62.5 MHz, CDCl₃): $\delta_{\text{ppm}} = 119.3$, 121.8, 122.5, 123.9, 125.4, 126.8, 127.7, 128.7, 129.2, 130.1, 133.3, 135.0, 139.3; IR (KBr): 3052, 1684, 1580, 1468 cm⁻¹.

1-phenyl-1H-imidazole (**3m**)

Column chromatography on silica gel (EtOAc:*n*-hexane, 2:1) afforded the product as a colorless liquid (Lit.⁸); yield: 93%; ¹H NMR (250 MHz, CDCl₃): $\delta_{ppm} = 6.96$ (s, 1H, C(5)-H of imidazole), 7.14 (s, 1H, C(4)-H of imidazole), 7.55-7.74 (complex, 4H, aryl, C(2)-H of imidazole), 8.03-8.06 (m, 2H, aryl); ¹³C NMR (62.5 MHz, CDCl₃): $\delta_{ppm} = 118.3$, 121.2, 127.2, 128.8, 129.6, 135.3, 137.3; IR (film): 3077, 1675, 1617, 1500, 1457 cm⁻¹.

l-(4-methoxyphenyl)-1H-imidazole (**3n**)

Column chromatography on silica gel (EtOAc:*n*-hexane, 2:1) afforded the product as a white solid; yield: 91%; mp 54-56 °C (Lit.⁸ 55-57 °C); ¹H NMR (250 MHz, CDCl₃): $\delta_{ppm} = 3.85$ (s, 3H, OCH₃), 6.92 (s, 1H, C(5)-H of imidazole), 7.08-7.15 (complex, 3H, aryl, C(4)-H of imidazole), 7.59 (s, 1H, C(2)-H of imidazole), 8.02-8.06 (s, 2H, aryl); ¹³C NMR (62.5 MHz, CDCl₃): $\delta_{ppm} = 56.9$, 115.1, 118.6, 123.4, 129.5, 130.8, 135.8, 159.6; IR (KBr): 3058, 2972, 1679, 1602, 1482, 1229 cm⁻¹.

1,2-diphenyl-1H-imidazole (**30**)

Column chromatography on silica gel (EtOAc:*n*-hexane, 1:1) afforded the product as a white solid; yield: 79%; mp 86-88 °C (Lit.⁷ 88-89 °C); ¹H NMR (250 MHz, CDCl₃): $\delta_{ppm} = 6.91$ (d, J = 1.0 Hz, 1H, C(5)-H of imidazole), 7.09 (d, J = 1.0 Hz, 1H, C(4)-H of imidazole), 7.21-7.30 (m, 5H, aryl), 7.42-7.45 (m, 3H, aryl), 7.55-7.58 (m, 5H, aryl); ¹³C NMR (62.5 MHz, CDCl₃): $\delta_{ppm} = 115.9$, 123.5, 125.7, 127.3, 128.1, 128.9, 129.2, 129.8, 130.8, 137.4, 144.8; IR (KBr): 3078, 1693, 1517, 1479 cm⁻¹.

Reference:

[1] T. Zhou, T.-C. Li, Z.-C. Chen, Hypervalent iodine in synthesis. Part 86: Selective coppercatalyzed n-monoarylation and N¹,N³-diarylation of uracil and its derivatives with diaryliodonium salts. *Helv. Chim. Acta*, **2005**, *88*, 290-296. doi: 10.1002/hlca.200590010

[2] E. C. Taylor, F. Yoneda, Purine chemistry. XVI. One-step synthesis of 7-aryltheophyllines. J.
 Org. Chem., 1972, 37, 4464-4465. doi: 10.1021/jo00799a037

[3] D. Kim, H. Jun, H. Lee, S.-S. Hong, S. Hong, Development of new fluorescent xanthines as kinase inhibitors. *Org. Lett.*, **2010**, *12*, 1212-1215. doi: 10.1021/ol100011n

[4] M. N. Soltani Rad, S. Behrouz, M. M. Doroodmand, N. Moghtaderi, Copper nanoparticledoped silica cuprous sulfate as a highly efficient and reusable heterogeneous catalysis for Narylation of nucleobases and N-heterocyclic compounds. *Synthesis*, **2011**, *23*, 3915-3924. doi: 10.1055/s-0030-1260236

[5] A. Kumar Verma, J. Singh, R. C. Larock, Benzotriazole: an efficient ligand for the copper-catalyzed N-arylation of indoles. *Tetrahedron*, 2009, 65, 8434-8439. doi: 10.1016/j.tet.2009.07.050
[6] Y. Wang, Q. Yang, M. Zhang, D. Lin, N-Arylation of heterocycles catalyzed by activated-copper in pure water. Tetrahedron Lett., 2013, 54, 1994-1997. doi: 10.1016/j.tetlet.2013.02.004

[7] R. A. Altman, E. D. Koval, S. L. Buchwald, Copper-catalyzed N-arylation of imidazoles and benzimidazoles. *J. Org. Chem.*, **2007**, *72*, 6190-6199. doi: 10.1021/jo070807a

[8] Q. Zhou, F. Du, Y. Chen, Y. Fu, W. Sun, Y. Wu, G. Chen, L-(–)-Quebrachitol as a ligand for selective copper(0)-catalyzed N-arylation of nitrogen-containing heterocycles. *J. Org. Chem.*, 2019, *84*, 8160-8167. doi: 10.1021/acs.joc.9b00997

7

