SUPPORTING INFORMATION

Design, synthesis and in-silico evaluation of newer 1,4-dihydropyridine based amlodipine bio-isosteres as promising antihypertensive agents

Priya Takkar^a, Bholey Singh^b, Balaram Pani^c, Rakesh Kumar^{a*}

^a Bio-organic Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India

^b Swami Shraddhanand College, Alipur, University of Delhi, Delhi-110036

^c Bhaskaracharya College of Applied Sciences, Dwarka Sector-2, University of Delhi, New Delhi -110075

* Corresponding author

Email: rakeshkp@email.com

CONTENTS

- 1. Characterization Data of the synthesized compounds
- 2. ¹H and ¹³C Spectra of the synthesized compounds
- 3. Single crystal X-ray Structures
- 4. Molecular Docking Assessment
- 5. In-silico ADMET Assessment
- 6. BOILED Egg Plot Analysis

1. Characterization Data of the synthesized compounds:

3-Ethyl 5-methyl 4-(2-chlorophenyl)-6-methyl-2-((prop-2-yn-1-yloxy)methyl)-1,4dihydropyridine-3,5-dicarboxylate (6). Yellow solid; Yield: 65%; mp: 111-113 °C ; IR (KBr, cm⁻¹); 3342, 2932, 1692, 1610, 1201; ¹H NMR (400 MHz, DMSO) δ 8.67 (s, 1H), 7.33 – 7.31 (m, 1H), 7.28 – 7.26 (m, 1H), 7.23 (dd, *J* = 7.5, 6.2 Hz, 1H), 7.12 (dd, *J* = 7.4, 6.0 Hz, 1H), 5.30 (s, 1H), 4.62 (d, *J* = 26.6 Hz, 2H), 4.22 (d, *J* = 2.4 Hz, 2H), 3.98 (dd, *J* = 7.1, 3.6 Hz, 2H), 3.53 (t, *J* = 2.4 Hz, 1H), 3.50 (s, 3H), 2.28 (s, 3H), 1.11 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 167.59, 166.76, 146.24, 146.11, 144.49, 131.50, 131.39, 129.45, 128.29, 127.94, 103.62, 101.98, 80.24, 78.31, 65.95, 59.93, 58.07, 50.98, 37.15, 18.58, 14.55; HRMS data: calcd mass (M+H)⁺ 404.1187, found, 404.1243. **3-Ethyl 5-methyl 4-(2-chlorophenyl)-2-(((1-(2-(2,3-dioxoindolin-1-yl)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)methyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate (P1).** Orange solid; Yield: 92%; mp: 138-140 °C ; IR (KBr, cm⁻¹); 3342, 2932, 1751, 1685, 1610, 1220; ¹H NMR (400 MHz, DMSO) δ 8.57 (s, 1H), 8.23 (s, 1H), 7.57 (dd, J = 7.8, 1.3 Hz, 1H), 7.53 (d, J = 6.8 Hz, 1H), 7.32 (dd, J = 7.8, 1.6 Hz, 1H), 7.27 (dd, J = 7.9, 1.2 Hz, 1H), 7.22 (dd, J = 7.5, 6.2 Hz, 1H), 7.13 (dd, J = 7.6, 1.6 Hz, 1H), 7.09 – 7.05 (m, 1H), 6.93 (d, J = 8.0 Hz, 1H), 5.29 (s, 1H), 4.66 (d, J = 6.0 Hz, 2H), 4.54 (dd, J = 7.7, 5.8 Hz, 4H), 4.13 (d, J = 5.7 Hz, 2H), 3.98 – 3.94 (m, 2H), 3.34 (s, 3H), 2.27 (s, 3H), 1.09 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 183.37, 167.60, 166.72, 158.59, 150.65, 146.28, 145.97, 145.01, 143.97, 138.55, 131.46, 129.44, 128.28, 127.92, 125.39, 124.99, 117.85, 110.73, 103.31, 102.07, 66.25, 63.76, 59.87, 50.99, 47.31, 37.16, 18.65, 14.53; HRMS data: calcd mass (M+H)⁺ 620.1834, found, 620.1922.

3-Ethyl 5-methyl 2-(((1-(2-(5-bromo-2,3-dioxoindolin-1-yl)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)methyl)-4-(2-chlorophenyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate (P2) Orange solid; Yield: 88%; mp: 136-138 °C ; IR (KBr, cm⁻¹); 3342, 2951, 1741, 1685, 1607, 1201; ¹H NMR (400 MHz, DMSO) δ 8.58 (s, 1H), 8.22 (s, 1H), 7.76 (dd, J = 8.4, 2.1 Hz, 1H), 7.70 (d, J = 2.1 Hz, 1H), 7.33 (dd, J = 7.8, 1.7 Hz, 1H), 7.26 (dd, J = 7.9, 1.2 Hz, 1H), 7.23 – 7.19 (m, 1H), 7.12 (dd, J = 7.5, 5.9 Hz, 1H), 6.90 (d, J = 8.5 Hz, 1H), 5.30 (s, 1H), 4.65 (s, 2H), 4.54 (dd, J = 8.8, 4.6 Hz, 4H), 4.13 (s, 2H), 3.96 (dd, J = 7.1, 3.5 Hz, 2H), 3.50 (s, 3H), 2.27 (s, 3H), 1.10 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 182.15, 167.62, 166.74, 158.21, 149.55, 146.27, 145.95, 145.01, 144.01, 140.25, 131.48,129.43, 128.28, 127.92, 127.25, 125.42, 119.58, 115.56, 112.90, 103.34, 102.10, 66.24, 63.75, 59.89, 50.99, 47.27, 37.17, 18.66, 14.53; HRMS data: calcd mass (M+H)⁺ 698.0939, found, 698.0998.

3-Ethyl 5-methyl 2-(((1-(2-(5-chloro-2,3-dioxoindolin-1-yl)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)methyl)-4-(2-chlorophenyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate (P3) Orange solid; Yield: 90%; mp: 138-140 °C ; IR (KBr, cm⁻¹); 3342, 2932, 1739, 1692, 1610, 1201; ¹H NMR (400 MHz, DMSO) δ 8.58 (s, 1H), 8.22 (s, 1H), 7.64 – 7.62 (m, 1H), 7.60 (d, *J* = 2.1 Hz, 1H), 7.32 (d, *J* = 6.2 Hz, 1H), 7.26 (d, *J* = 6.9 Hz, 1H), 7.20 (d, *J* = 7.5 Hz, 1H), 7.13 – 7.10 (m, 1H), 6.94 (s, 1H), 5.29 (s, 1H), 4.65 (s, 2H), 4.55 – 4.52 (m, 4H), 4.14 (s, 2H), 3.97 – 3.94 (m, 2H), 3.50 (s, 3H), 2.27 (s, 3H), 1.09 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 182.29, 167.60, 166.73, 158.38, 149.19, 146.29, 145.96, 145.01, 144.00, 137.42, 131.48, 129.43, 128.26, 128.03, 128.33, 127.81, 125.43, 124.51, 119.23, 112.48, 103.35, 102.09, 66.25,

63.77, 59.87, 50.98, 47.28, 37.17, 18.66, 14.53; HRMS data: calcd mass (M+H)⁺ 654.1444, found, 654.1539.

3-Ethyl 5-methyl 4-(2-chlorophenyl)-2-(((1-(2-(5-fluoro-2,3-dioxoindolin-1-yl)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)methyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate (P4) Orange solid; Yield: 90%; mp: 140-142 °C ; IR (KBr, cm⁻¹); 3355, 2947, 1759, 1698, 1602, 1207; ¹H NMR (400 MHz, DMSO) δ 8.57 (s, 1H), 8.22 (s, 1H), 7.49 – 7.46 (m, 1H), 7.46 – 7.44 (m, 1H), 7.33 – 7.31 (m, 1H), 7.28 – 7.25 (m, 1H), 7.21 (dd, *J* = 7.5, 6.2 Hz, 1H), 7.12 (dd, *J* = 7.5, 5.9 Hz, 1H), 6.97 – 6.94 (m, 1H), 5.29 (s, 1H), 4.65 (s, 2H), 4.54 (dd, *J* = 7.2, 3.7 Hz, 4H), 4.13 (d, *J* = 5.7 Hz, 2H), 3.96 (dd, *J* = 7.1, 3.4 Hz, 2H), 3.50 (s, 3H), 2.27 (s, 3H), 1.09 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 182.79, 167.63, 166.74, 158.62, 157.73, 146.88, 146.25, 145.95, 145.00, 144.00, 131.46, 129.43, 128.29, 127.91, 125.41, 124.64, 124.40, 118.72, 112.24, 112.10, 103.29, 102.08, 66.23, 63.73, 59.89, 50.99, 47.27, 37.16, 18.63, 14.51; HRMS data: calcd mass (M+H)⁺ 638.1740, found, 638.1859.

3-Ethyl 5-methyl 4-(2-chlorophenyl)-2-(((1-(2-(3-formyl-1H-indol-1-yl)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)methyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate (P5) Orange solid; Yield: 92%; mp: 145-147 °C ; IR (KBr, cm⁻¹); 3379, 2947, 1746, 1692, 1610, 1218; ¹H NMR (400 MHz, DMSO) δ 9.82 (s, 1H), 8.59 (s, 1H), 8.07 (dd, *J* = 7.0, 1.2 Hz, 1H), 8.03 (s, 1H), 8.02 (s, 1H), 7.52 (d, *J* = 7.7 Hz, 1H), 7.32 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.27 (dd, *J* = 7.7, 1.2 Hz, 2H), 7.24 – 7.23 (m, 1H), 7.21 – 7.19 (m, 1H), 7.14 – 7.10 (m, 1H), 5.30 (s, 1H), 4.87 (d, *J* = 5.8 Hz, 2H), 4.82 (d, *J* = 5.8 Hz, 2H), 4.54 (dd, *J* = 7.9, 5.8 Hz, 4H), 3.98 – 3.93 (m, 2H), 3.50 (s, 3H), 2.27 (s, 3H), 1.09 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 185.16, 167.64, 166.75, 146.24, 145.96, 145.04, 144.01, 141.08, 137.36, 131.46, 129.45, 128.30, 127.90, 124.95, 124.11, 123.05, 121.47, 118.02, 111.09, 103.24, 102.08, 66.20, 63.68, 59.90, 51.00, 49.49, 46.72, 37.16, 18.63, 14.50; HRMS data: calcd mass (M+H)⁺ 618.2041, found, 618.2167.

3-Ethyl 5-methyl 4-(2-chlorophenyl)-6-methyl-2-(((1-phenyl-1H-1,2,3-triazol-4-yl)methoxy)methyl)-1,4-dihydropyridine-3,5-dicarboxylate (P6). White solid; Yield: 95%; mp: 125-127 °C ; IR (KBr, cm⁻¹); 3373, 2897, 1695, 1605, 1276; ¹H NMR (400 MHz, DMSO) δ 8.85 (s, 1H), 8.68 (s, 1H), 7.90 (d, *J* = 7.5 Hz, 2H), 7.63 – 7.60 (m, 2H), 7.52 – 7.49 (m, 1H), 7.35 – 7.32 (m, 1H), 7.27 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.21 (dd, *J* = 7.5, 6.3 Hz, 1H), 7.12 (dd, *J* = 7.5, 5.9 Hz, 1H), 5.31 (s, 1H), 4.76 – 4.71 (m, 3H), 4.62 (d, *J* = 13.6 Hz, 1H), 3.99 – 3.94 (m, 2H), 3.49 (s, 3H), 2.29 (s, 3H), 1.09 (s, 3H).¹³C NMR (101 MHz, DMSO) δ 167.59, 166.78, 146.26, 146.03, 144.98, 137.08, 131.47, 130.39, 129.44, 129.17, 128.27, 127.92, 122.92,

120.53, 103.59, 102.01, 66.47, 63.85, 59.90, 50.96, 37.21, 18.65, 14.50; HRMS data: calcd mass (M+H)⁺ 523.1670, found, 523.1748.

3-Ethyl 5-methyl 4-(2-chlorophenyl)-2-(((1-(4-fluorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)methyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate (P7). White solid; Yield: 96%; mp: 125-127 °C ; IR (KBr, cm⁻¹); 3342, 2932, 1692, 1610, 1201; ¹H NMR (400 MHz, DMSO) δ 8.83 (s, 1H), 8.69 (s, 1H), 7.97 – 7.95 (m, 1H), 7.95 – 7.93 (m, 1H), 7.47 (dd, J = 11.0, 4.3 Hz, 2H), 7.33 (dd, J = 7.8, 1.6 Hz, 1H), 7.28 – 7.26 (m, 1H), 7.22 (dd, J = 7.5, 6.3 Hz, 1H), 7.12 (dd, J = 7.5, 6.0 Hz, 1H), 5.30 (s, 1H), 4.72 (dd, J = 9.9, 5.4 Hz, 3H), 4.61 (d, J = 13.6 Hz, 1H), 3.96 (dd, J = 7.1, 2.4 Hz, 2H), 3.49 (s, 3H), 2.29 (s, 3H), 1.09 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 167.58, 166.77, 146.25, 146.04, 145.11, 144.86, 133.63, 131.47, 129.44, 128.27, 127.91, 123.16, 122.87, 117.34, 117.11, 103.61, 102.00, 66.47, 63.82, 59.90, 50.96, 37.20, 18.65, 14.49; HRMS data: calcd mass (M+H)⁺ 541.1576, found, 541.1651.

3-Ethyl 5-methyl 4-(2-chlorophenyl)-2-(((1-(4-chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)methyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate (P8). White solid; Yield: 96%; mp: 123-125 °C ; IR (KBr, cm⁻¹); 3373, 2920, 1695, 1607, 1287; ¹H NMR (400 MHz, DMSO) δ 8.88 (s, 1H), 8.69 (s, 1H), 7.96 – 7.94 (m, 2H), 7.70 – 7.68 (m, 2H), 7.33 (dd, J = 7.8, 1.7 Hz, 1H), 7.26 (dd, J = 7.9, 1.2 Hz, 1H), 7.21 (dt, J = 7.6, 3.7 Hz, 1H), 7.14 – 7.09 (m, 1H), 5.29 (s, 1H), 4.75 – 4.70 (m, 3H), 4.61 (d, J = 13.5 Hz, 1H), 3.98 – 3.94 (m, 2H), 3.49 (s, 3H), 2.28 (s, 3H), 1.09 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 167.57, 166.77, 146.25, 146.05, 145.25, 144.84, 135.87, 133.42, 131.46, 130.37, 129.44, 128.28, 127.92, 123.02, 122.19, 103.64, 101.98, 66.47, 63.79, 59.90, 50.96, 37.19, 31.43, 22.54, 18.65, 14.50; HRMS data: calcd mass (M+H)⁺ 557.1280, found, 557.1357.

3-Ethyl 5-methyl 2-(((1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl)methoxy)methyl)-4-(2-chlorophenyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate (P9). White solid; Yield: 94%; mp: 124-126 °C ; IR (KBr, cm⁻¹); 3361, 2874, 1684, 1602, 1280; ¹H NMR (400 MHz, DMSO) δ 8.87 (s, 1H), 8.66 (s, 1H), 7.89 (d, *J* = 9.0 Hz, 2H), 7.82 (d, *J* = 9.0 Hz, 2H), 7.34 – 7.32 (m, 1H), 7.28 – 7.25 (m, 1H), 7.21 (dd, *J* = 7.5, 6.2 Hz, 1H), 7.12 (dd, *J* = 7.5, 5.9 Hz, 1H), 5.30 (s, 1H), 4.74 (dd, *J* = 13.1, 4.2 Hz, 3H), 4.61 (d, *J* = 13.6 Hz, 1H), 3.99 – 3.94 (m, 2H), 3.49 (s, 3H), 2.29 (s, 3H), 1.09 (d, *J* = 2.6 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 167.57, 166.77, 146.23, 146.01, 145.27, 144.83, 136.28, 133.29, 131.47, 129.44, 128.27, 127.90, 122.96, 122.43, 121.80, 103.62, 102.00, 66.49, 65.38, 63.81, 59.90, 50.95, 37.22, 31.42, 22.53, 18.65, 15.63, 14.49; HRMS data: calcd mass (M+H)⁺ 601.0775, found, 601.0852.

3-Ethyl 5-methyl 4-(2-chlorophenyl)-2-(((1-(4-iodophenyl)-1H-1,2,3-triazol-4-yl)methoxy)methyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate (P10). White solid; Yield: 94%; mp: 125-127 °C ; IR (KBr, cm⁻¹); 3361, 2899, 1692, 1610, 1201; ¹H NMR (400 MHz, DMSO) δ 8.86 (s, 1H), 8.67 (s, 1H), 7.97 (d, J = 8.8 Hz, 2H), 7.72 (s, 2H), 7.34 – 7.31 (m, 1H), 7.28 – 7.25 (m, 1H), 7.21 (dd, J = 7.5, 6.2 Hz, 1H), 7.12 (dd, J = 7.5, 5.9 Hz, 1H), 5.29 (s, 1H), 4.75 – 4.70 (m, 3H), 4.60 (d, J = 13.6 Hz, 1H), 3.96 (dd, J = 7.1, 2.4 Hz, 2H), 3.49 (s, 3H), 2.28 (s, 3H), 1.08 (s, 3H). ¹³C NMR (101 MHz,) δ 167.63, 166.83, 146.30, 146.08, 145.32, 144.89, 139.15, 136.79, 131.53, 129.50, 128.15, 127.93, 127.82, 122.90, 122.45, 103.68, 102.05, 94.85, 66.54, 63.87, 59.96, 51.02, 31.48, 22.59, 18.71, 15.69, 14.55; HRMS data: calcd mass (M+H)⁺ 649.0636, found, 649.0686.

3-Ethyl 5-methyl 4-(2-chlorophenyl)-6-methyl-2-(((1-(4-nitrophenyl)-1H-1,2,3-triazol-4-yl)methoxy)methyl)-1,4-dihydropyridine-3,5-dicarboxylate (P11). White solid; Yield: 93%; mp: 127-128 °C ; IR (KBr, cm⁻¹); 3342, 2932, 1692, 1610, 1287; ¹H NMR (400 MHz, DMSO) δ 9.07 (s, 1H), 8.69 (s, 1H), 8.47 (d, J = 9.2 Hz, 2H), 8.24 (d, J = 9.2 Hz, 2H), 7.34 – 7.32 (m, 1H), 7.28 – 7.25 (m, 1H), 7.22 (dd, J = 7.5, 6.3 Hz, 1H), 7.12 (dd, J = 7.5, 6.0 Hz, 1H), 5.29 (s, 1H), 4.74 (d, J = 2.7 Hz, 3H), 4.62 (d, J = 13.5 Hz, 1H), 3.97 (dd, J = 7.1, 2.4 Hz, 2H), 3.49 (s, 3H), 2.29 (s, 3H), 1.09 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 167.57, 166.77, 146.23, 146.01, 145.27, 144.83, 136.28, 133.29, 131.47, 129.44, 128.27, 127.90, 122.96, 122.43, 121.80, 103.62, 102.00, 66.49, 65.38, 63.81, 59.90, 50.95, 37.22, 31.42, 22.53, 18.65, 15.63, 14.49; HRMS data: calcd mass (M+H)⁺ 568.1521, found, 568.1590.

3-Ethyl 5-methyl 4-(2-chlorophenyl)-2-(((1-(2-fluorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)methyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate (P12). White solid; Yield: 92%; mp: 126-128 °C ; IR (KBr, cm⁻¹); 3349, 2920, 1684, 1605, 1265; ¹H NMR (400 MHz, DMSO) δ 8.70 (s, 1H), 8.64 (d, J = 2.1 Hz, 1H), 7.84 (dd, J = 7.8, 6.3 Hz, 1H), 7.62 – 7.56 (m, 2H), 7.48 – 7.44 (m, 1H), 7.34 – 7.32 (m, 1H), 7.28 – 7.25 (m, 1H), 7.21 (dt, J = 7.7, 3.7 Hz, 1H), 7.12 (dd, J = 7.4, 6.0 Hz, 1H), 5.31 (s, 1H), 4.73 (d, J = 2.3 Hz, 3H), 4.63 (d, J = 13.6 Hz, 1H), 3.97 (dd, J = 7.1, 2.7 Hz, 2H), 3.50 (s, 3H), 2.29 (s, 3H), 1.10 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 167.59, 166.79, 155.49, 153.00, 146.26, 146.05, 144.87, 144.64, 131.61, 129.44, 128.27, 127.91, 126.53, 125.94, 125.20, 117.64, 103.60, 102.00, 66.51, 63.69, 59.90, 50.96, 37.21, 18.63, 14.50; HRMS data: calcd mass (M+H)⁺ 541.1576, found, 541.1650.

3-Ethyl 5-methyl 4-(2-chlorophenyl)-2-(((1-(2-methoxy-4-nitrophenyl)-1H-1,2,3-triazol-4-yl)methoxy)methyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate (P13). White solid; Yield: 91%; mp: 130-132 °C ; IR (KBr, cm⁻¹); 3361, 2932, 1696, 1610, 1271; ¹H NMR (400 MHz, DMSO) δ 8.70 (s, 1H), 8.68 (s, 1H), 8.09 (s, 1H), 8.04 (s, 2H), 7.34 – 7.32 (m, 1H), 7.28 – 7.26 (m, 1H), 7.21 (t, *J* = 7.0 Hz, 1H), 7.12 (dd, *J* = 7.4, 6.1 Hz, 1H), 5.30 (s, 1H), 4.73 (d, *J* = 2.6 Hz, 3H), 4.63 (d, *J* = 13.7 Hz, 1H), 4.03 (s, 3H), 3.98 (dd, *J* = 7.1, 2.6 Hz, 2H), 3.49 (s, 3H), 2.29 (s, 3H), 1.10 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 167.58, 166.81, 151.81, 148.58, 146.15, 144.88, 144.38, 131.47, 130.95, 129.44, 128.28, 127.91, 126.59, 126.24, 116.78, 108.87, 103.62, 101.97, 66.46, 63.66, 59.91, 57.59, 50.96, 37.20, 18.63, 14.51; HRMS data: calcd mass (M+H)⁺ 598.1626, found, 598.1693.

3-Ethyl 5-methyl 4-(2-chlorophenyl)-2-(((1-(3-cyanophenyl)-1H-1,2,3-triazol-4-yl)methoxy)methyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate (P14). White solid; Yield: 96%; mp: 128-130 °C ; IR (KBr, cm⁻¹); 3373, 2932, 1695, 1605, 1287; ¹H NMR (400 MHz, DMSO) δ 8.94 (s, 1H), 8.66 (s, 1H), 8.44 – 8.43 (m, 1H), 8.30 (ddd, J = 8.3, 2.3, 1.0 Hz, 1H), 8.00 – 7.97 (m, 1H), 7.83 (t, J = 8.0 Hz, 1H), 7.33 (dd, J = 7.8, 1.7 Hz, 1H), 7.27 (dd, J = 7.9, 1.3 Hz, 1H), 7.22 (td, J = 7.5, 1.3 Hz, 1H), 7.14 – 7.10 (m, 1H), 5.30 (s, 1H), 4.75 (t, J = 9.5 Hz, 3H), 4.61 (d, J = 13.5 Hz, 1H), 3.97 (dd, J = 7.1, 2.3 Hz, 2H), 3.49 (s, 3H), 2.29 (s, 3H), 1.10 (d, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 167.57, 166.77, 146.22, 146.00, 145.44, 144.80, 137.49, 132.75, 131.81, 131.48, 129.45, 128.26, 127.90, 125.15, 123.88, 123.17, 118.27, 113.30, 103.67, 101.99, 66.52, 63.80, 59.90, 50.94, 37.25, 18.65, 14.49; HRMS data: calcd mass (M+H)⁺ 548.1622, found, 548.1678.

2. ¹H and ¹³C NMR Spectra of the synthesized compounds:

Figure S1. ¹H NMR spectrum of compound 6 (400 MHz, DMSO-*d6*).

Figure S2. ¹³C NMR spectrum of compound 6 (100 MHz, DMSO-*d6*).

Figure S3. ¹H NMR spectrum of compound P1 (400 MHz, DMSO-*d6*).

Figure S4. ¹³C NMR spectrum of compound P1 (100 MHz, DMSO-*d6*).

Figure S5. ¹H NMR spectrum of compound P2 (400 MHz, DMSO-*d6*).

Figure S6. ¹³C NMR spectrum of compound P2 (100 MHz, DMSO-*d6*).

Figure S7. ¹H NMR spectrum of compound P3 (400 MHz, DMSO-*d6*).

Figure S8. ¹³C NMR spectrum of compound P3 (100 MHz, DMSO-*d6*).

Figure S9. ¹H NMR spectrum of compound P4 (400 MHz, DMSO-*d6*).

Figure S10. ¹³C NMR spectrum of compound P4 (100 MHz, DMSO-*d6*).

Figure S11. ¹H NMR spectrum of compound P5 (400 MHz, DMSO-*d6*).

Figure S12. ¹³C NMR spectrum of compound P5 (100 MHz, DMSO-*d6*).

Figure S13. ¹H NMR spectrum of compound P6 (400 MHz, DMSO-*d6*).

Figure S14. ¹³C NMR spectrum of compound P6 (100 MHz, DMSO-*d6*).

Figure S15. ¹H NMR spectrum of compound P7 (400 MHz, DMSO-*d6*).

Figure S16. ¹³C NMR spectrum of compound P7 (100 MHz, DMSO-*d6*).

Figure S17. ¹H NMR spectrum of compound P8 (400 MHz, DMSO-*d6*).

Figure S18. ¹³C NMR spectrum of compound P8 (100 MHz, DMSO-*d6*).

Figure S19. ¹H NMR spectrum of compound P9 (400 MHz, DMSO-*d6*).

Figure S20. ¹³C NMR spectrum of compound P9 (100 MHz, DMSO-*d6*).

Figure S21. ¹H NMR spectrum of compound P10 (400 MHz, DMSO-*d6*).

Figure S22. ¹³C NMR spectrum of compound P10 (100 MHz, DMSO-*d6*).

Figure S23. ¹H NMR spectrum of compound P11 (400 MHz, DMSO-*d6*).

Figure S24. ¹³C NMR spectrum of compound P11 (100 MHz, DMSO-*d6*).

Figure S25. ¹H NMR spectrum of compound P12 (400 MHz, DMSO-*d6*).

Figure S26. ¹³C NMR spectrum of compound P12 (100 MHz, DMSO-*d6*).

Figure S27. ¹H NMR spectrum of compound P13 (400 MHz, DMSO-*d6*).

Figure S28. ¹³C NMR spectrum of compound P13 (100 MHz, DMSO-*d6*).

Figure S29. ¹H NMR spectrum of compound P14 (400 MHz, DMSO-*d6*).

Figure S30. ¹³C NMR spectrum of compound P14 (100 MHz, DMSO-*d6*).

3. Single crystal X-ray Structures:

Fine crystals of ligand **P7** were grown by slow evaporation of saturated mother solvent methanol & chloroform which was layered by hexane and diffused by ether at room temperature for SC-XRD studies. Good quality rectangular shaped yellowish crystals were taken and exposed to X-rays on a Bruker diffractometer employing a graphite monochromatized Mo/K α radiation ($\lambda = 0.71073$ Å) at temperature 107 K. The crystal data was reduced using CrysAlis pro software available with the diffractometer. Further, least square refinement after introduction of anisotropic displacement parameters yielded the R values mentioned in the **Table S1**. The structure was solved by direct methods using SHELXL-2016/4 and refined by the full-matrix least-squares method on Olex2.refine 1.5¹. All calculations were carried out using the OLEX2 package of the crystallographic programs². For the molecular graphics, the program Mercury (2022.3.0) was used³. The selected cell parameters, *etc.* are given in **Table S2**.

Atoms	Bond Angle(°)	Atoms	Bond Length(Å)		
∠ C00F-C00C-C11	124.9(1)	C1–C00F	1.749		
∠ C20–C00C–C11	118.4(1)	C00F–C00C	1.397		
∠ C10–C11–C12	110.1(1)	C00C-C11	1.537		
∠ O1–C8–C9	111.5(1)	C9–C8	1.524		
∠ C7–O1–C8	113.2(1)	C8–O1	1.426		
∠ O1–C7–C6	107.6(1)	O1–C7	1.436		
∠ N2–C6–C5	108.5(1)	C7–C6	1.492		
∠ N2–C6–C7	119.9(1)	N4–C00G	1.425		
∠ C00G–N4–C5	129.5(1)	C00P–F	1.360		
∠ N3–N4–C00G	119.9(1)	C9–C10	1.355		

 Table S1. Some important bond angles and bond lengths for P7.

 Table S2. Crystal data and structure refinement for compound P7

Identification code	<u>81</u>
Empirical formula	C ₂₇ H ₂₆ Cl FN ₄ O ₅
Temperature/K	107(2)
Crystal system	monoclinic
Space group	P 21/c
a/Å	9.5711(4)
b/Å	37.8741(14)
c/Å	7.8420(3)
α/°	90
β/°	101.890(4)
γ/°	90
Volume/Å ³	2781.71(19)
Ζ	31
pcalcg/cm ³	1.390
μ/mm ⁻¹	0.192
F(000)	1224.0

Radiation	Mo/K _{α} ($\lambda = 0.71073$)
20 range for data collection/°	3.059 to 31.063
Index ranges	$-12 \le h \le 13, -45 \le k \le 50, -8 \le l \le 10$
No of Reflections measured	7106
Independent reflections	5657
Goodness-of-fit on F ²	1.097
R [F ² > 2 σ (F ²)], wR(all data)	0.0468, 0.1304

Figure S31. Host-guest encapsulation of solvent molecule via -CH-Pi interactions between the adjacent molecules of P7.

Figure S32. 3D packing arrangement of cell axis passing through the P7 molecule.

Figure S33. A network of P7 *via* intra- and intermolecular H-bonding between the adjacent molecules.

Figure S34. Gliding plane passing through the molecule for the confirmation of symmetrical and streamlined shape of the molecule P7.

4. Molecular Docking Assessment:

Table S3. Binding affinity of P1-P14 with 5KMD along with their amino acid residue interactions.

Comment	Binding Affinity	Interacting aming acid residues				
Compound	(kcal/mol)	Interacting amino acid residues				
		TYR1195, GLY1164, GLU1165, MET1188, PHE1167,				
P1	-8.5	ILE1199, THR1162, VAL1196, PRO1200, PHE1171,				
		ARG1185, GLU1158, TYR1168				
		ILE1199, GLU1165, MET1188, ARG1185, TYR1168,				
P2	-8.4	TYR1195, VAL1196, PRO1200, PHE1171, PHE1167,				
		GLU1158, GLU1189, THR1162, GLY1164				
		ILU1199, PHE1167, TYR1195, GLY1164, TYR1168,				
P3	-8.5	ARG1185, MET1188, GLU1165, PRO1200, PHE1171,				
		VAL1196, THR1162, GLU1189, GLU1158				
	-8.6	TYR1195, GLY1164, GLU1158, ARG1185, MET1188,				
P4		GLU1165, PHE1167, ILE1199, VAL1196, PRO1200,				
		PHE1171, THR1162, TYR1168				
	-8.3	TYR1195, GLY1164, GLU1165, MET1188, PHE1167,				
P5		ILE1199, VAL1196, PRO1200, PHE1171, ARG1185,				
		GLU1158, TYR1168				
D6	7.6	TYR1195, PHE1167, ILE1199, GLY1164, PHE1171,				
10	-7.0	PRO1200, VAL1196, TYR1168, MET1188, GLU1165				
D7	00	ILE1199, TYR1195, PHE1167, GLY1164, PHE1171,				
1 /	-0.0	TYR1168, MET1188, GLU1165, VAL1196, PRO1200				
DQ	7.0	ILE1199, PHE1167, TYR1195, GLY1164, TYR1168,				
10	-7.3	MET1188, PHE1171, PRO1200, VAL1196, GLU1165				
		TYR1195, GLY1164, MET1188, PHE1167, ILE1199,				
P9	-8.0	VAL1196, PHE1203, PRO1200, PHE1171, TYR1168,				
		GLU1165, GLU1158				
		MET1188, TYR1195, GLY1164, PHE1167, ILE1199,				
P10	-7.8	GLU1158, GLU1165, VAL1196, PRO1200, PHE1171,				
		TYR1168				

		MET1188, GLY1164, TYR1195, PHE1167,ILE1199,
P11	-8.2	ARG1185, GLU1158, GLU1165, TYR1168, LEU1163,
		PHE1171, PRO1200, PHE1203, VAL1196
		ILE1199, PHE1167, TYR1195, GLY1164, PHE1171,
P12	-7.8	THR1162, GLU1165, TYR1168, MET1188, VAL1196,
		PRO1200
		MET1188, ARG1185, PHE1167, ILE1199, TYR1195,
P13	-7.6	GLY1164, TYR1168, THR1162, PRO1192, GLU1165,
		GLU1158
		ILE1199, GLY1164, PHE1167, TYR1195, ARG1185,
P14	-8.1	MET1188, GLU1165, PHE1171, PHE1203, PRO1200,
		VAL1196, TYR1168, GLU1158
		ILE1199, TYR1195, THR1138, VAL1196, PRO1200,
Amlodipine	-5.6	PHE1203, PHE1141, PHE1167, PHE1171, TYR1168,
		GLY1164

Table S4. Binding affinity of P1-P14 with 6M7H along with their amino acid residue interactions.

Compound	Binding Affinity (kcal/mol)	Interacting amino acid residues
		LEU112, PHE19, LEU39, VAL91, ALA88, ASP80,
P1	-8.1	MSE36, GLN41, GLU87, MSE72, PHE68, MSE145,
11		MSE144, LEU105, MSE109, MSE124, PHE92, LEU18,
		VAL35, MSE71, ALA15
	-7.7	ASP80, LEU39, ALA88, PHE19, MSE144, MSE145,
D2		LYS75, GLU84, MSE36, PHE92, MSE109, MSE124,
P2		LEU18, PHE68, ALA15, MSE72, MSE71, VAL35,
		GLU87, GLN41, VAL91
Р3	-7.2	ALA15, ALA88, LEU39, VAL91, MSE145, ASP80,
		GLU14, GLU11, LEU18, LEU112, GLN41, GLU87,
		VAL108, LYS75, MSE72, PHE68, MSE36, PHE19

P4	0.0	ALA88, GLU84, PHE19, MSE144, MSE124, ALA128,			
		VAL136, ILE100, PHE92, LEU112, GLU87, VAL91,			
	-8.0	LEU39, ILE125, MSE109, LEU18, PHE141, MSE36,			
		MSE145, ILE85, ASP80, GLN41			
		LEU112, MSE124, MSE144, VAL136, PHE92, ALA128,			
P5	83	LEU105, ALA88, GLU84, GLN41, LEU18, PHE19,			
15	-0.3	MSE36, LEU39, VAL91, MSE145, GLU87, ASP80,			
		PHE141, ILE100, ILE125, GLU127, MSE109			
		ALA88, MSE109, MSE145, ALA128, PHE92, ILE100,			
Р6	-8.1	LEU105, MSE144, VAL136, ILE85, ASP80, GLU84,			
10	-0.1	MSE36, GLN41, GLU87, LEU39, VAL91, ILE125,			
		MSE124, PHE141, PHE19			
		ALA88, MSE109, MSE145, PHE92, ALA128, MSE144,			
D7	-83	LEU105, ASP80, PHE19, ILE85, MSE36, GLU84,			
17	-0.3	GLU87, GLN41, VAL91, LEU39, MSE124, ILE125,			
		VAL136, ILE100, PHE141			
P8	-7.7	ALA88, MSE145, MSE109, MSE124, LEU105, PHE92,			
		MSE144, VAL136, ILE125, ALA128, ILE85, ASP80,			
10		MSE36, PHE19, GLU84, GLN41, GLU87, VAL91,			
		LEU39, PHE141, ILE100			
		ALA88, PHE92, MSE109, MSE124, ILE125, VAL136,			
PQ	-7 4	ALA128, MSE144, LEU105, ASP80, MSE145, PHE19,			
17	/	GLU84, MSE36, GLU87, GLN41, VAL91, LEU39,			
		PHE141			
		ALA88, ALA15, LEU18, GLU14, GLU11, PHE92,			
P10	-7.2	LEU39, VAL91, GLU87, GLN41, GLU84, MSE36, ILE85,			
		ASP80, MSE145, PHE19, MSE109			
		ALA88, MSE109, MSE145, LEU105, ILE125, MSE144,			
P11	-7.7	PHE19, MSE36, ASP80, ILE85, GLU84, GLU87, GLN41,			
		VAL91, LEU39, PHE92, ILE100, MSE124, VAL136,			
		ALA128, PHE141			
P12	-8.1	ALA88, MSE109, MSE145, MSE144, ALA128, ILE100,			
P12	-0.1	VAL136, PHE92, LEU105, ASP80, PHE19, MSE36,			

		ILE85, GLU84, GLU87, GLN41, VAL91, LEU39,
		PHE141, ILE125, MSE124
		ALA88, MSE109, MSE145, LEU105, MSE144, ILE125,
D13	-7.4	ASP80, MSE36, ILE85, GLU84, GLN41, GLU87, VAL91,
F 13		LEU39, PHE19, PHE92, PHE141, ILE100, VAL136,
		ALA128, MSE124
D14	-7.8	MSE144, MSE109, PHE92, ALA88, LEU105, MSE124,
		ALA128, ASP80, MSE145, ILE85, MSE36, PHE19,
F 14		GLU84, GLU87, GLN41, VAL91, LEU39, ILE125,
		VAL136, ILE100, PHE141
Amlodipine		ALA88, ILE85, GLU84, MSE36, GLN41, GLU87,
	-5.1	VAL91, PHE92, LEU39, MSE145, PHE19, VAL35,
		LEU112, ASP80

5. In-silico ADMET Assessment:

In-silico ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) analysis is critical in the drug discovery and development as it predicts how a potential therapeutic compound will react in the body, particularly in the context of pharmacokinetics^{4,5}. ADMET assessments are conducted in conjunction with molecular docking investigations to assess the safety and efficacy of a pharmacological compound. In the journey of drug development, it is essential to examine the ADMET characteristics along with its adherence to the Lipinski rules⁶. Tables **S5** and **S6** present the critical pharmacological attributes of our newly synthesized candidates.

According to the Lipinski rules, an orally bioactive medication should ideally not exceed one violation. **Table S5** demonstrates that the synthesized compounds **P6-P10**, **P12**, and **P14** fully complied with the Lipinski criteria and no Lipinski violations were identified except one violation: MW>500. Further, compounds with their TPSA (Topological Polar Surface Area) values less than 140 Å² are anticipated to have a high oral bioavailability⁷. TPSA values of **P5-P10**, **P12**, and **P14** were determined to be <140 Å², suggesting their high oral bioavailability and hence can act as active therapeutic compounds. The TPSA values of the remaining scaffolds had a low oral bioavailability as depicted TPSA values exceeded the ideal value.

Furthermore, the in-silico results show moderate risk of hERG (human Ether-a-go-go-Related Gene) inhibition for all the hybrids except **P11**. Additionally, all the synthesized hybrids exhibited negative carcino test (mouse), that was found positive for the standard amlodipine. Whereas, all hybrids except **P9**, and **P10** displayed negative carcino test (rat), that was negative for amlodipine also. Thus, based on the negative carcino tests and moderate risk of hERG inhibition observed in the above assessments, it is indeed possible that these compounds might not lead to adverse cardiac implications.

Compound	Molecular Formula	Molecular Weight	HBA^*	HBD**	n. Rot. [#]	iLogP	Lipinski	
P1	$C_{31}H_{30}ClN_5O_7$	620.05	9	1	13	4.15	No; 2 violations: MW>500, NorO>10	
P2	$C_{31}H_{29}BrClN_5O_7$	698.95	9	1	13	4.40	No; 2 violations: MW>500, NorO>10	
Р3	$C_{31}H_{29}Cl_2N_5O_7$	654.50	9	1	13	4.37	No; 2 violations: MW>500, NorO>10	
P4	C31H29ClFN5O7	638.04	10	1	13	3.85	No; 2 violations: MW>500, NorO>10	
Р5	C ₃₂ H ₃₂ ClN ₅ O ₆	618.08	8	1	14	4.42	No; 2 violations: MW>500, NorO>10	
P6	C ₂₇ H ₂₇ ClN ₄ O ₅	522.98	7	1	11	4.42	Yes; 1 violation: MW>500	
P7	C ₂₇ H ₂₆ ClFN ₄ O ₅	540.97	8	1	11	4.36	Yes; 1 violation: MW>500	
P8	$C_{27}H_{26}Cl_2N_4O_5$	557.43	7	1	11	4.50	Yes; 1 violation: MW>500	
Р9	$C_{27}H_{26}BrClN_4O_5$	601.88	7	1	11	4.70	Yes; 1 violation: MW>500	
P10	$C_{27}H_{26}ClIN_4O_5$	648.88	7	1	11	4.68	Yes; 1 violation: MW>500	
P11	$C_{27}H_{26}ClN_5O_7$	567.98	9	1	12	4.18	No; 2 violations: MW>500, NorO>10	
P12	$C_{27}H_{26}ClFN_4O_5$	540.97	8	1	11	4.38	Yes; 1 violation: MW>500	
P13	$C_{28}H_{28}ClN_5O_8$	598.00	10	1	13	3.99	No; 2 violations: MW>500, NorO>10	
P14	$C_{28}H_{26}ClN_5O_5$	547.99	8	1	11	4.46	Yes; 1 violation: MW>500	
Amlodipine	$C_{20}H_{25}ClN_2O_5$	408.88	6	2	10	3.17	Yes; 0 violation	

Table S5. Drug-like properties of the synthesized hybrids P1-P14.

* HBA = Hydrogen Bonded Acceptors; ** HBD = Hydrogen Bonded Donors; # n. Rot. = Number of rotatable bonds

0 1	GI	BBB		Synthetic	PAINS	Carcino	Carcino	hERG
Compound	Absorption	permeant	IPSA	Assessibility	Alerts	Test(Mouse)	Test(Rat)	inhibition
D1	I	N	141.05	5 1 5	0			Medium
P1	Low	NO	141.95	5.15	0	negative	negative	risk
DA	T	N	141.05	5 10	0		t.	Medium
F2	Low	NO	141.95	5.19	0	negative	negative	risk
D2	Low	Na	141.05	5 1 5	0	nantina	magativa	Medium
rə	LOW	NO	141.95	5.15	0	negative	negative	risk
D.4	T	N-	141.05	5.17	0			Medium
r4	LOW	NO	141.95	5.17	0	negative	negative	risk
D <i>5</i>	T	N	126.57	5.01	0			Medium
rs	LOW	NO	120.37	5.21	0	negative	negative	risk
Dć	IIiah	Na	104 57	4.70	0	nantina	nontino	Medium
ro	пign	NO	104.37	4.79	0	negative	negative	risk
D7	IIiah	Na	104 57	4 77	0	nantina	magativa	Medium
ľ /	пign	NO	104.37	4.//	0	negative	negative	risk
DQ	Iliah	Na	104 57	4.80	0	nantina	nontino	Medium
ro	пign	NO	104.37	4.80	0	negative	negative	risk
DO	High	No	104 57	4 70	0	nagativa	nositivo	Medium
Г 7	riigii	NO	104.37	4.79	0	negative	positive	risk
D10	High	No	104 57	1 95	0	nagativa	nositivo	Medium
110	mgn	INU	104.37	4.85	0	negative	positive	risk
D11	Low	No	150.39	4 87	0	negative	negative	High
	LOw	NO	150.59	4.07	U	negative	negative	risk
D12	High	No	104 57	1 76	0	nagativa	nagativa	Medium
114	mgn	INU	104.37	4.70	0	negative	negative	risk
P13	Low	No	159.62	5.04	0	negative	negative	Medium
115	LOw	NO	139.02	5.04	U	negative	negative	risk
P14	High	No	128.36	4.84	0	negative	negative	Medium
114	mgn	INU	120.50	4.04	0	negative negati	negative	risk
Amlodining	High	No	00.99	1 20	0	nositivo	negative	Medium
Annourphie	mgn	INU	77.00	4.39	0	positive	negative	risk

6. BOILED Egg Plot Analysis:

It is imperative to investigate the two significant pharmacokinetic aspects of a compound throughout the multiple phases of drug discovery: its gastrointestinal absorption and its ability to penetrate the brain⁸. These assessments provide critical insights into how the compound is absorbed in the digestive tract and whether it can cross the blood-brain-barrier, which significantly impacts its suitability as a prospective therapeutic candidate. We assessed the gastrointestinal absorption (GI) and blood-brain-barrier (BBB) permeation attributes of the synthesized hybrids using the BOILED-Egg approach⁹. The resulting graph, as shown in Fig. S35, depicts the findings of this analysis. In this approach, the white region corresponds to the physicochemical field associated with the compounds that can be effectively absorbed by the GI tract. Conversely, the yellow region signifies the physicochemical field associated with the compounds having the potential to permeate the BBB (blood-brain-barrier), implying their capability to access the central nervous system (CNS). These findings are essential to understand the potential pharmacokinetic behaviour of the compounds and their capacity to reach target sites throughout the body. As evident from Table and Figure, compounds P6-P10, P12 and P14 exhibit high gastrointestinal absorption and no blood-brain-barrier penetration, which is noticeable in the white region of the egg. However, compounds P1-P5, P11 and P13 were found to have low GI absorption and were not able to penetrate the BBB.

Fig. S35. BIOLED Egg plot analysis demonstrating high GI absorption in case of compounds P6-P10, P12 and P14 as depicted in the white region of the egg and low GI absorption in case of P1-P5, P11 and P13.

References

- 1 G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem., 2015, 71, 3-8.
- 2 O. V Dolomanov, J. Appl. Cryst, 2009, 42, 339-341.
- 3 C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. V. D. Streek, *J. Appl. Crystallogr.*, 2006, **39**, 453–457.
- 4 S. Kar and J. Leszczynski, Expert Opin. Drug Discov., 2020, 15, 1473–1487.
- 5 G. Moroy, V. Y. Martiny, P. Vayer, B. O. Villoutreix and M. A. Miteva, *Drug Discov. Today*, 2012, **17**, 44–55.
- 6 C. A. Lipinski, Drug Discov. today Technol., 2004, 1, 337–341.
- 7 J. J. Lu, K. Crimin, J. T. Goodwin, P. Crivori, C. Orrenius, L. Xing, P. J. Tandler, T. J. Vidmar,
 B. M. Amore and A. G. E. Wilson, *J. Med. Chem.*, 2004, 47, 6104–6107.
- 8 H. A. Alghamdi, S. A. Attique, W. Yan, A. Arooj, O. Albulym, D. Zhu, M. Bilal and M. Z. Nawaz, *Process Biochem.*, 2021, **110**, 216–222.
- 9 A. Daina and V. Zoete, ChemMedChem, 2016, 11, 1117–1121.