Supplementary Materials for

Asymmetric synthesis of chiral (thio)chromanes and exploration on

their structure-activity relationship in macrophages

Xiao Zhang ^{# a, b}, Qian Zhou ^{# c}, Yue Zhou ^c, Zihao Wang ^{e, f*}, Jun Wang ^{b, d} and Mingfu Wang ^{a, c*}

a School of Biological Science, The University of Hong Kong, Hong Kong 999077, China b Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China

c Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China

d Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China

e School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China

f. Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University,

Hong Kong 999077, China

This PDF file includes:

General information Table S1 to S7 Figure S1 References

1. General information

All the air or moisture sensitive reactions and manipulations were performed under an atmosphere of argon by using standard Schlenk techniques and Drybox (Mikrouna, Supper 1220/750). ¹H NMR and ¹³C NMR spectra were recorded on Bruker-Avance 400 or 500 MHz spectrometer. CDCl₃ was used as solvent. Chemical shifts (δ) were reported in ppm with tetramethylsilane as internal standard, and *J* values were given in Hz. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, dd = double of doublets, t = triplet, q = quartet, m = multiplet. Flash column chromatograph was carried out using 200-300 mesh silica gel at medium pressure. High resolution mass spectra (HRMS) were recorded on a LC-TOF spectrometer. ESI-HRMS data were acquired using a Thermo LTQ Orbitrap XL Instrument equipped with an ESI source. Optical rotation was obtained on a Rudolph Research Analytical (Atopol I). HPLC analysis was performed on Agilent 1260 series, UV detection monitored at 230 or 220 nm. Tetrahydrofuran was distilled over sodium.

2. Preparation of substrates

The substrate allyl phosphate was prepared according to the literature ¹.

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} OH \\ \end{array} + PhMgBr \end{array} \xrightarrow[THF, 0 \ ^{\circ}C \ - rt \end{array} \xrightarrow[Ph]{Ph} OH \end{array} \xrightarrow[Ph]{Ph} OH \\ \begin{array}{c} \begin{array}{c} (IP(O)(OPh)_2 \ (1.5 \ eq.)) \\ DMAP \ (5 \ mol\%) \end{array} \xrightarrow[Ph]{Ph} OP(O)(OPh)_2 \\ \hline \\ \end{array} \xrightarrow[DMAP \ (5 \ mol\%) \end{array} \xrightarrow[Ph]{Ph} OP(O)(OPh)_2 \\ \hline \\ \end{array} \xrightarrow[Ph]{NEt_3 \ (2 \ eq)} \end{array} \xrightarrow[Ph]{Ph} OP(O)(OPh)_2 \\ \hline \\ \end{array} \xrightarrow[Reaction \ procedure: \ To \ add \ CuI \ (10 \ mmol, \ 1.95 \ g) \ to \ a \ 250 \ mL \ two-mouth \ flask, \ and \\ \end{array} \xrightarrow[Ph]{Ph} OP(O)(OPh)_2 \\ \hline \\ \end{array} \xrightarrow[Reaction \ procedure: \ To \ add \ CuI \ (10 \ mmol, \ 1.95 \ g) \ to \ a \ 250 \ mL \ two-mouth \ flask, \ and \\ \hline \\ THF \ to \ the \ flask \ and \ add \ phenyl \ magnesium \ bromide \ (PhMgBr, \ 50 \ mmol, \ 50 \ mL) \ at \ 0 \end{array}$

°C. After stirring for half an hour, propargyl alcohol (20 mmol, 2.9 mL) solution was added dropwise at 0 °C. Then the mixture was allowed to stir at rt for 20 h. The reaction was quenched carefully by aqueous saturated NH₄Cl solution in ice-water bath. The biphase system was extracted by ethyl acetate for three times (100 mL x 3) and then the combined organic phase was washed by brine for three times (100 mL x 3). The organic phase was dried over MgSO₄, concentrated in vacuo and the residue was purified by

silica gel column chromatography (pe/ea = 20/1, v/v)) to provide allyl alcohol (17.2 mmol, 2.3 g).

To add DCM (30 mL) to a 100 mL round-bottom flask containing the substrate allyl alcohol and stir. And then to add phenyl chlorophosphate (25.8 mmol, 5.5 mL) and DMAP (0.86 mmol, 0.235 g). Then triethylamine (34.4 mol, 4.5 mL) was added dropwise at 0 °C and then stirred at rt for 2 h. The reaction was quenched carefully by aqueous saturated NaHCO₃ solution. The biphase system was extracted by DCM for three times (100 mL x 3) and then the combined organic phase was washed by brine for three times (100 mL x 3). The organic phase was dried over MgSO₄, concentrated in vacuo and the residue was purified by silica gel column chromatography (PE/EA = 10/1, v/v) to provide allyl phosphate (15.3 mmol, 5.6 g).

3. Preparation for 4-allyl chromanes compounds

The specific operation of copper(I) hydride-catalyzed hydroallylation was as follows:

CuCl (0.01 mmol, 1.0 mg), L1 (0.011mmol, 5.6 mg) and THF (0.5 mL) were added into the reaction tube (10.0 mL) in a glove box filled with argon atmosphere. After stirring for 10 min at room temperature, phenylsilane (0.5 mol) was added, followed by stirring for 10 min at room temperature, followed by allyl phosphate (0.5 mmol), LiO*t*Bu (0.5 mmol, 40.0 mg), and chromene (0.2 mmol). The reaction tube was removed from the glove box and stirred at rt for 24 h. At the end of the reaction, the reaction was filtered through the funnel with EA and concentrated in vacuo and the residue was purified by silica gel column chromatography (PE) to provide chromane compound. The ee value of the product was determined by HPLC. Diastereomeric ratio was determined by ¹H NMR.

4. Characterization data (¹H NMR, ¹³C NMR, ¹⁹F NMR, HRMS, and HPLC) of the products

(R)-4-(2-phenylallyl)chromane (3aa)

Colorless oil, 91% yield; $[a]^{20}{}_{D}$ = -4.6 (c = 7.4, CHCl₃); ee was determined to be 99% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol = 95/5, 1.0 mL/min, 254 nm); tr (major) = 5.389 min; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.1 Hz, 2H), 7.41 (t, *J* = 7.4 Hz, 2H), 7.35 (d, *J* = 7.2 Hz, 1H), 7.20 (d, *J* = 9.3 Hz, 1H), 7.11 (d, *J* = 7.0 Hz, 1H), 6.90 (d, *J* = 7.4 Hz, 1H), 6.86 - 6.79 (m, 1H), 5.40 (s, 1H), 5.11 (s, 2H), 4.33 - 4.04 (m, 2H), 3.21 (dd, *J* = 14.0, 3.9 Hz, 1H), 2.88 (dq, *J* = 10.1, 4.9 Hz, 1H), 2.60 (dd, *J* = 14.3, 10.8 Hz, 1H), 2.00 - 1.77 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 154.18, 146.30, 141.21, 140.56, 133.35, 128.76, 128.64, 127.79, 127.78, 126.81, 126.63, 126.37, 117.23, 115.21, 63.35, 42.77, 31.61, 26.06. HRMS (ESI) m/z: calcd for C₁₈H₁₈O M250.1358, found 250.1350.

(*R*)-6-methoxy-4-(2-phenylallyl)chromane (3ab)

Colorless oil, 64% yield; $[a]^{20}_{D} = -117.2$ (c = 5, CHCl₃); ee was determined to be 95% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol = 98/2, 1.0 mL/min, 254 nm); tr (major) = 7.465 min; ¹H NMR (400 MHz, CDCl₃) δ 7.52 - 7.46 (m, 2H), 7.43 - 7.35 (m, 2H), 7.35 - 7.29 (m, 1H), 6.78 - 6.66 (m, 3H), 5.38 (d, *J* = 1.8 Hz, 1H), 5.10 (td, *J* = 1.6, 0.8 Hz, 1H), 4.19 - 4.03 (m, 2H), 3.77 (s, 3H), 3.18 (ddd, *J* = 14.5, 4.7, 1.5 Hz, 1H), 2.84 (dq, *J* = 10.4, 5.1 Hz, 1H), 2.64 - 2.54 (m, 1H), 1.90 (dddd, *J* = 14.7, 9.3, 5.8, 3.7 Hz, 1H), 1.79 (dtd, *J* = 13.9, 5.4, 3.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 153.18, 148.60, 146.31, 140.53, 128.58, 127.73, 126.84, 126.31,117.25, 115.10, 114.08, 113.11, 63.20, 55.80, 42.79, 31.71, 26.16. HRMS (ESI) m/z: calcd for C₁₉H₂₀O₂ M280.1463, found 280.1450.

(*R*)-6-methyl-4-(2-phenylallyl)chromane (3ac)

Colorless oil, 67% yield; $[a]^{20}{}_{D} = -270.6$ (c = 4.1, CHCl₃); ee was determined to be 98% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol = 98/2, 1.0 mL/min, 254 nm); tr (major) = 4.544 min; ¹H NMR (400 MHz, CDCl₃) δ 7.56 - 7.50 (m, 2H), 7.47 - 7.39 (m, 2H), 7.38 - 7.32 (m, 1H), 7.01 (d, J = 2.1 Hz, 1H), 6.94 (dd, J = 8.3, 2.2 Hz, 1H), 6.74 (d, J = 8.2 Hz, 1H), 5.41 (d, J = 1.5 Hz, 1H), 5.13 (d, J = 1.6 Hz, 1H), 4.25 - 4.00 (m, 2H), 3.23 (ddd, J = 14.3, 4.4, 1.4 Hz, 1H), 2.86 (dq, J = 10.2, 5.0 Hz, 1H), 2.60 (dd, J = 14.3, 11.0 Hz, 1H), 2.32 (s, 3H), 1.88 (dtd, J = 25.2, 5.5, 3.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 152.30, 146.38, 140.63, 129.27, 128.55, 128.08, 127.69, 126.33, 125.84, 116.56, 114.99, 63.14, 42.73, 31.39, 25.97, 20.65. HRMS (ESI) m/z: calcd for C₁₉H₂₀O M264.1514, found 264.1509.

(R)-6-bromo-4-(2-phenylallyl)chromane (3ad)

Colorless oil, 66% yield; $[a]^{20}{}_{D}$ = +43.3 (c = 5, CHCl₃); ee was determined to be 99% by HPLC analysis with a Chiralcel IC column (hexane/2-propanol = 95/5, 1.0 mL/min, 254 nm); tr (major) = 5.194 min; ¹H NMR (400 MHz, CDCl₃) δ 7.52 - 7.47 (m, 2H), 7.45 - 7.38 (m, 2H), 7.38 - 7.31 (m, 1H), 7.28 (s, 2H), 7.19 (dd, *J* = 8.7, 2.4 Hz, 1H), 6.70 (d, *J* = 8.7 Hz, 1H), 5.39 (s, 1H), 5.11 (s, 1H), 4.21 - 4.08 (m, 2H), 3.16 (dd, *J* = 14.1, 4.0 Hz, 1H), 2.84 (dd, *J* = 10.5, 5.2 Hz, 1H), 2.58 (dd, *J* = 14.2, 10.7 Hz, 1H), 1.96 - 1.75 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 153.63, 145.92, 140.31, 131.51, 130.26, 128.63, 128.25, 127.81, 126.29, 118.66, 115.38, 112.09, 63.27, 42.56, 31.37, 25.52. HRMS (ESI) m/z: calcd for C₁₈H₁₇OBr M328.0463, found 328.0448; calcd for C₁₈H₁₇O⁸¹Br M330.0442, found 330.0430.

(R)-6-chloro-4-(2-phenylallyl)chromane (3ae)

Colorless oil, 70% yield; $[a]^{20}{}_{D} = -14.1$ (c = 5, CHCl₃); ee was determined to be 97% by HPLC analysis with a Chiralcel ODH column (hexane/2-propanol = 98/2, 1.0 mL/min, 254 nm); tr (major) = 4.963 min; ¹H NMR (500 MHz, CDCl₃) δ 7.52 - 7.47 (m, 2H), 7.42 (dd, J = 8.4, 6.8 Hz, 2H), 7.38 - 7.32 (m, 1H), 7.16 - 7.12 (m, 1H), 7.06 (dd, J = 8.7, 2.6 Hz, 1H), 6.75 (d, J = 8.7 Hz, 1H), 5.40 (d, J = 1.3 Hz, 1H), 5.11 (d, J = 1.5 Hz, 1H), 4.22 - 4.09 (m, 2H), 3.17 (ddd, J = 14.3, 4.7, 1.4 Hz, 1H), 2.84 (dq, J = 10.3, 5.1 Hz, 1H), 2.58 (dd, J = 14.3, 10.7 Hz, 1H), 1.97 - 1.77 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 153.12, 145.94, 140.33, 128.63, 128.56, 127.80, 127.66, 127.38, 126.29, 124.75, 118.17, 115.36, 63.30, 42.57, 31.42, 25.58. HRMS (ESI) m/z: calcd for C₁₈H₁₇OCl M284.0968, found 284.0961; calcd for C₁₈H₁₇O³⁷Cl M286.0938, found 286.0933.

(R)-6-phenyl-4-(2-phenylallyl)chromane (3af)

Colorless oil, 72% yield; $[a]^{20}D = +33.1$ (c = 5, CHCl₃); ee was determined to be 75% by HPLC analysis with a Chiralcel AD-H column (hexane/2-propanol = 98/2, 1.0 mL/min, 254 nm); tr (major) = 9.055 min; ¹H NMR (500 MHz, CDCl₃) δ 7.54 - 7.51 (m, 2H), 7.51 - 7.47 (m, 2H), 7.43 - 7.38 (m, 3H), 7.37 - 7.35 (m, 3H), 7.32 - 7.29 (m, 2H), 6.88 - 6.85 (m, 1H), 5.37 (s, 1H), 5.09 (s, 1H), 4.16 (dddd, J = 24.2, 11.0, 5.3, 3.4 Hz, 2H), 3.22 (ddd, J = 14.3, 4.8, 1.5 Hz, 1H), 2.92 (dq, J = 10.3, 5.0 Hz, 1H), 2.62 (dd, J = 14.4, 10.6 Hz, 1H), 1.97 - 1.88 (m, 1H), 1.85 - 1.80 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 154.21, 146.32, 141.23, 140.58, 135.82, 133.37, 128.79, 128.67, 127.82, 127.80, 126.83, 126.69, 126.66, 126.40, 117.26, 115.24, 63.37, 42.78, 31.63, 26.08. **HRMS (ESI) m/z: calcd for C₂₄H₂₂O M326.1671, found 326.1668.**

(R)-4-(2-phenylallyl)-3,4-dihydro-2H-benzo[h]chromene (3ag)

Colorless oil, 70% yield; $[a]^{20}{}_{D} = -42.1$ (c = 5, CHCl₃); ee was determined to be 97% by HPLC analysis with a Chiralcel IC column (hexane/2-propanol = 99/1, 0.5 mL/min, 254 nm); tr (major) = 9.040 min; ¹H NMR (400 MHz, CDCl₃) δ 8.26 - 8.19 (m, 1H), 7.83 - 7.75 (m, 1H), 7.60 - 7.56 (m, 2H), 7.51 - 7.47 (m, 2H), 7.47 - 7.42 (m, 2H), 7.42 - 7.35 (m, 2H), 7.31 (d, *J* = 8.5 Hz, 1H), 5.44 (d, *J* = 1.4 Hz, 1H), 5.16 (q, *J* = 1.2 Hz, 1H), 4.45 - 4.31 (m, 2H), 3.32 (ddd, *J* = 14.4, 4.3, 1.4 Hz, 1H), 3.01 (dq, *J* = 9.8, 4.4 Hz, 1H), 2.65 (dd, *J* = 14.4, 10.9 Hz, 1H), 2.12 - 1.92 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 149.53, 146.42, 140.68, 133.19, 128.62, 127.75, 127.38, 127.11, 126.41, 125.84, 125.27, 125.24, 121.70, 119.65, 119.53, 115.12, 63.24, 43.03, 31.56, 25.73. HRMS (ESI) m/z: calcd for C₂₂H₂₀O [M+H]⁺301.1592, found 301.1586.

(*R*)-4-(2-(4-methoxyphenyl)allyl)chromane (3ah)

Colorless oil, 86% yield; $[a]^{20}_{D} = -59.9$ (c = 5, CHCl₃); ee was determined to be 98% by HPLC analysis with a Chiralcel OD-H column hexane/2-propanol = 98/2, 1.0 mL/min, 254 nm); tr (major) = 7.624 min; ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, J = 8.7 Hz, 2H), 7.24 - 7.19 (m, 1H), 7.16 - 7.11 (m, 1H), 6.98 - 6.94 (m, 2H), 6.91 (td, J = 7.5, 1.3 Hz, 1H), 6.84 (dd, J = 8.2, 1.3 Hz, 1H), 5.34 (s, 1H), 5.04 (s, 1H), 4.33 - 4.09 (m, 2H), 3.87 (s, 3H), 3.19 (ddd, J = 14.3, 4.6, 1.4 Hz, 1H), 2.91 (dq, J = 10.2, 5.0 Hz, 1H), 2.58 (dd, J = 14.3, 10.8 Hz, 1H), 1.99 - 1.78 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 159.27, 154.51, 145.53, 132.89, 129.02, 127.41, 126.28, 120.17, 116.82, 113.92, 113.55, 63.19, 55.33, 42.80, 31.41, 25.87. HRMS (ESI) m/z: calcd for C₁₉H₂₀O₂ M280.1463, found 280.1459.

(R)-4-(2-(4-(tert-butyl)phenyl)allyl)chromane (3ai)

Colorless oil, 60% yield; $[a]^{20}{}_{D}$ = -24.4 (c = 6.2, CHCl₃); ee was determined to be 98% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol = 98/2, 1.0 mL/min, 254 nm); tr (major) = 10.784 min; ¹H NMR (500 MHz, CDCl₃) δ 7.51 - 7.46 (m, 2H), 7.46 - 7.42 (m, 2H), 7.23 (dt, *J* = 7.7, 1.1 Hz, 1H), 7.16 - 7.10 (m, 1H), 6.92 (td, *J* = 7.4, 1.3 Hz, 1H), 6.84 (dd, *J* = 8.2, 1.3 Hz, 1H), 5.41 (s, 1H), 5.08 (s, 1H), 4.26 - 4.10 (m, 2H), 3.22 (ddd, *J* = 14.3, 4.4, 1.4 Hz, 2H), 2.92 (dq, *J* = 10.2, 5.0 Hz, 1H), 2.60 (dd, *J* = 14.3, 10.8 Hz, 1H), 1.98 - 1.82 (m, 2H), 1.38 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 154.52, 150.72, 145.85, 137.40, 129.06, 127.37, 126.31, 125.92, 125.46, 120.16, 116.81, 114.34, 63.20, 42.70, 34.57, 31.35 (d, *J* = 3.2 Hz), 25.92. **HRMS (ESI) m/z: calcd for C₂₂H₂₆O M306.1984, found 306.1971.**

(R)-4-(2-(p-tolyl)allyl)chromane (3aj)

Colorless oil, 76% yield; $[a]^{20}{}_{D}$ = -99.6 (c = 5, CHCl₃); ee was determined to be 94% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol = 98/2, 1.0 mL/min, 254 nm); tr (major) = 5.427 min; ¹H NMR (500 MHz, CDCl₃) δ 7.42 (d, *J* = 8.1 Hz, 2H), 7.22 (t, *J* = 8.6 Hz, 3H), 7.14 - 7.11 (m, 1H), 6.92 - 6.89 (m, 1H), 6.83 (d, *J* = 8.1 Hz, 1H), 5.38 (s, 1H), 5.07 (s, 1H), 4.27 - 4.08 (m, 2H), 3.20 (ddd, *J* = 14.4, 4.6, 1.4 Hz, 1H), 2.89 (dq, *J* = 10.2, 5.0 Hz, 1H), 2.58 (dd, *J* = 14.3, 10.8 Hz, 1H), 5.40 (s, 3H), 2.05- 1.75 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 154.51, 146.05, 137.58, 137.51, 129.26, 129.02, 127.37, 126.19, 120.15, 116.80, 114.29, 63.18, 42.75, 31.38, 25.87, 21.14. HRMS (ESI) m/z: calcd for C₁₉H₂₀O M264.1514, found 264.1507.

(*R*)-4-(2-(4-fluorophenyl)allyl)chromane (3ak)

Colorless oil, 80% yield; $[a]^{20}_{D} = -7.8$ (c = 5, CHCl₃); ee was determined to be 97% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol = 98/2, 1.0 mL/min, 254 nm); tr (major) = 6.564 min; ¹H NMR (500 MHz, CDCl₃) δ 7.53 - 7.44 (m, 2H), 7.21 - 7.06 (m, 4H), 6.92 - 6.89 (m, 1H), 6.84 (d, *J* = 8.2 Hz, 1H), 5.35 (s, 1H), 5.11 (s, 1H), 4.25 - 4.10 (m, 1H), 3.17 (ddd, *J* = 14.4, 4.5, 1.4 Hz, 1H), 2.89 - 2.84 (m, 1H), 2.60 (dd, *J* = 14.4, 10.7 Hz, 1H), 1.97 - 1.90 (m, 1H), 1.85 - 1.80 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 163.42, 161.46, 154.51, 145.29, 136.62 (d, *J* = 3.5 Hz), 128.95, 127.91 (d, *J* = 7.9 Hz), 127.50, 125.99, 120.21, 116.89, 115.45 (d, *J* = 21.3 Hz), 115.06, 63.12, 42.85, 31.37, 25.88. ¹⁹F NMR (376 MHz, CDCl_{33ay}) δ -114.71. HRMS (ESI) m/z: calcd for C₁₈H₁₇OF M268.1263, found 268.1255.

(R)-4-(2-(4-chlorophenyl)allyl)chromane (3al)

Colorless oil, 51% yield; $[a]^{20}{}_{D} = -63.7$ (c = 5.8, CHCl₃); ee was determined to be 97% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol = 98/2, 1.0 mL/min, 254 nm); tr (major) = 7.192 min; ¹H NMR (500 MHz, CDCl₃) δ 7.46 - 7.42 (m, 2H), 7.40 - 7.36 (m, 2H), 7.18 - 7.10 (m, 2H), 6.90 (td, J = 7.4, 1.3 Hz, 1H), 6.83 (dd, J = 8.2, 1.3 Hz, 1H), 5.39 (d, J = 1.2 Hz, 1H), 5.13 (d, J = 1.5 Hz, 1H), 4.24 - 4.12 (m, 2H), 3.16 (ddd, J = 14.4, 4.6, 1.4 Hz, 1H), 2.85 (dq, J = 10.3, 5.0 Hz, 1H), 2.59 (dd, J = 14.4, 10.8 Hz, 1H), 1.99 - 1.76 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 154.48, 145.19, 139.00, 133.52, 128.93, 128.74, 127.62, 127.51, 125.89, 120.21, 116.89, 115.60, 63.09, 42.63, 31.38, 25.89. HRMS (ESI) m/z: calcd for C₁₈H₁₇OCl M284.0968, found 284.0962; calcd for C₁₈H₁₇O³⁷Cl M286.0938, found 286.0930.

(R)-4-(2-(o-tolyl)allyl)chromane (3am)

Colorless oil, 82% yield; $[a]^{20}_{D} = -82.8$ (c = 5.5, CHCl₃); ee was determined to be 99% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol = 98/2, 1.0 mL/min, 254 nm); tr (major) = 5.066 min; ¹H NMR (500 MHz, CDCl₃) δ 7.27 - 7.17 (m, 4H), 7.13 - 7.08 (m, 1H), 7.08 - 7.06 (m, 1H), 6.88 - 6.85 (m, 1H), 6.84 - 6.81 (m, 1H), 5.29 (s, 1H), 5.08 (s, 1H), 4.25 - 4.15 (m, 2H), 3.05 - 2.97 (m, 1H), 2.84 - 2.73 (m, 1H), 2.56 (dd, *J* = 14.4, 11.2 Hz, 1H), 2.42 (s, 3H), 2.11 - 1.91 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 154.65, 147.67, 141.92, 134.89, 130.50, 129.13, 128.45, 127.35, 127.16, 126.23, 125.70, 120.25, 116.81 (d), 63.04, 45.22, 31.26, 25.94, 20.16. HRMS (ESI) m/z: calcd for C₁₉H₂₀O M264.1514, found 264.1513.

(R)-4-(2-(m-tolyl)allyl)chromane (3an)

Colorless oil, 82% yield; $[a]^{20}_{D} = -9.8$ (c = 5, CHCl₃); ee was determined to be >99% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol = 98/2, 1.0 mL/min, 254 nm); tr (major) = 5.517 min; ¹H NMR (500 MHz, CDCl₃) δ 7.33 - 7.24 (m, 3H), 7.17 (d, *J* = 7.7 Hz, 1H), 7.13 - 7.07 (m, 2H), 6.87 (q, *J* = 10.2, 7.4 Hz, 1H), 6.79 (d, *J* = 8.1 Hz, 1H), 5.35 (s, 1H), 5.05 (s, 1H), 4.21 - 4.08 (m, 2H), 3.21 - 3.05 (m, 1H), 2.92 - 2.82 (m, 1H), 2.59 - 2.52 (m, 1H), 2.38 (s, 3H), 1.95 - 1.74 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 154.57, 146.44, 140.60, 138.15, 129.06, 128.53, 128.49, 127.44, 127.15, 126.31, 123.44, 120.22, 116.87, 114.90, 63.23, 42.82, 31.43, 25.94, 21.65. HRMS (ESI) m/z: calcd for C₁₉H₂₀O M264.1514, found 264.1508.

(*R*)-4-(2-(3,4-dimethoxyphenyl)allyl)chromane (3ao)

Colorless oil, 50% yield; $[a]^{20}{}_{D} = -49.7$ (c = 5.2, CHCl₃); ee was determined to be 98% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol = 98/2, 1.0 mL/min, 254 nm); tr (major) = 12.089 min; ¹H NMR (400 MHz, CDCl₃) δ 8.24 - 8.14 (m, 3H), 7.86 - 7.76 (m, 2H), 7.31 - 7.26 (m, 2H), 7.12 (ddd, J = 8.1, 7.1, 1.2 Hz, 1H), 7.03 (ddd, J = 8.1, 7.0, 1.0 Hz, 1H), 3.50 (s, 3H), 1.75 - 1.67 (m, 2H), 1.61 - 1.57 (m, 1H), 1.35 (s, 3H), 1.29 (s, 3H), 0.84 - 0.75 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 184.68, 182.10, 164.45, 143.87 (d), 141.39, 134.62, 134.18 (d), 132.06 (d), 128.13, 127.23, 126.55, 121.98, 119.96, 118.72, 110.22, 102.76, 52.27, 37.22 (d), 27.41 (d), 9.21. HRMS (ESI) m/z: calcd for C₂₀H₂₂O₃ M310.1569, found 310.1565.

Colorless oil, 85% yield; $[a]^{20}{}_{D}$ = -39.9 (c = 5.4, CHCl₃); ee was determined to be 92% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol = 98/2, 1.0 mL/min, 254 nm); tr (major) = 4.317 min; ¹H NMR (500 MHz, CDCl₃) δ 7.19 - 7.15 (m, 1H), 7.11 - 7.06 (m, 3H), 6.95 (s, 1H), 6.87 (td, *J* = 7.4, 1.3 Hz, 1H), 6.79 (dd, *J* = 8.1, 1.3 Hz, 1H), 5.33 (d, *J* = 1.7 Hz, 1H), 5.03 (s, 1H), 4.21 - 4.03 (m, 2H), 3.16 (ddd, *J* = 14.4, 4.5, 1.5 Hz, 1H), 2.86 (dq, *J* = 10.2, 5.0 Hz, 1H), 2.53 (dd, *J* = 14.3, 10.9 Hz, 1H), 2.34 (s, 6H), 1.95 - 1.73 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 154.59, 146.52, 140.64, 138.01, 129.44, 129.04, 127.42, 126.39, 124.25, 120.21, 116.87, 114.68, 63.28, 42.83, 31.43, 25.96, 21.52. **HRMS (ESI) m/z: calcd for C₂₀H₂₂O₃ M310.1569, found 310.1566.**

(R)-4-(2-(3,5-dimethylphenyl)allyl)chromane (3aq)

Colorless oil, 85% yield; $[a]^{20}{}_{D}$ = -59.2 (c = 5.4, CHCl₃); ee was determined to be 98% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol = 98/2, 1.0 mL/min, 254 nm); tr (major) = 4.411 min; ¹H NMR (500 MHz, CDCl₃) δ 7.15 - 7.07 (m, 4H), 7.05 (d, *J* = 7.7 Hz, 1H), 6.88 (t, *J* = 7.4 Hz, 1H), 6.84 (d, *J* = 8.1 Hz, 1H), 5.28 (s, 1H), 5.07 (s, 1H), 4.23 - 4.18 (m, 2H), 3.01 (d, *J* = 14.3 Hz, 1H), 2.82 - 2.77 (m, 1H), 2.61 - 2.52 (m, 1H), 2.41 (s, 3H), 2.39 (s, 3H), 2.08 - 2.01 (m, 1H), 1.99 - 1.92 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 154.64, 147.55, 138.94, 136.73, 134.74, 131.32, 129.15, 128.39, 127.31, 126.36 (d, *J* = 9.6 Hz), 120.23, 116.75, 63.06, 45.34, 31.28, 25.94, 21.08, 20.15. HRMS (ESI) m/z: calcd for C₂₀H₂₂O M278.1671, found 278.1665.

(*R*)-4-(2-mesitylallyl)chromane (3ar)

Colorless oil, 46% yield; $[a]^{20}_{D} = -121.9$ (c = 5, CHCl₃); ee was determined to be 53% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol = 98/2, 1.0 mL/min, 254 nm); tr (major) = 3.989 min; ¹H NMR (500 MHz, CDCl₃) δ 7.14 - 7.04 (m, 2H), 6.92 (s, 2H), 6.89 - 6.81 (m, 2H), 5.40 (q, *J* = 1.6 Hz, 1H), 5.03 (d, *J* = 1.6 Hz, 1H), 4.32 - 4.14 (m, 2H), 3.04 - 3.00 (m, 1H), 2.78 - 2.69 (m, 1H), 2.53 - 2.48 (m, 1H), 2.36 - 2.26 (m, 9H), 2.24 - 2.15 (m, 1H), 2.12 - 2.07 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 154.70, 146.54, 139.40, 136.13, 134.98, 134.77, 129.41, 128.47, 128.39, 127.34, 126.40, 120.35, 116.79, 115.45, 63.05, 44.82, 31.05, 26.45, 20.96, 20.18, 19.92. **HRMS (ESI) m/z: calcd for C₂₁H₂₄O M292.1827, found 292.1821.**

(*R*)-4-(2-(naphthalen-2-yl)allyl)chromane (3as)

Colorless oil, 50% yield; $[a]^{20}{}_{D} = -36.4$ (c = 5, CHCl₃); ee was determined to be 96% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol = 98/2, 1.0 mL/min, 254 nm); tr (major) = 6.226 min; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 1.8 Hz, 1H), 7.91 - 7.84 (m, 3H), 7.66 (dd, J = 8.6, 1.8 Hz, 1H), 7.55 - 7.46 (m, 2H), 7.26 - 7.21 (m, 1H), 7.16 - 7.07 (m, 1H), 6.94 - 6.87 (m, 1H), 6.83 (dd, J = 8.2, 1.3 Hz, 1H), 5.54 (d, J = 1.4 Hz, 1H), 5.21 (s, 1H), 4.26 - 4.08 (m, 2H), 3.33 (ddd, J = 14.2, 4.5, 1.4 Hz, 1H), 3.00 - 2.88 (m, 1H), 2.75 - 2.62 (m, 1H), 2.00 - 1.80 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 154.54, 146.17, 137.88, 133.45, 132.95, 129.00, 128.18 (d), 127.63, 127.46, 126.35, 126.19, 126.06, 125.07, 124.67, 120.21, 116.87, 115.60, 63.22, 42.73, 31.56, 25.99. HRMS (ESI) m/z: calcd for C₂₂H₂₀O M300.1514, found 300.1509.

(3S,4R)-3-methyl-4-(2-phenylallyl)chromane (3at)

Colorless oil, 42% yield, >25:1 dr; $[a]^{20}_{D}$ = +1.7 (c = 5, CHCl₃); ee was determined to be 99% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol = 98/2, 1.0 mL/min, 254 nm); tr (major) = 7.192 min; ¹H NMR (400 MHz, CDCl₃) δ 7.52 - 7.46 (m, 1H), 7.43 - 7.37 (m, 2H), 7.36 - 7.30 (m, 1H), 7.13 - 7.09 (m, 2H), 6.91 - 6.79 (m, 2H), 5.36 (d, *J* = 1.4 Hz, 1H), 5.06 (s, 1H), 4.19 (dd, *J* = 11.0, 2.3 Hz, 1H), 3.94 (ddd, *J* = 11.0, 2.7, 1.4 Hz, 1H), 3.03 (dd, *J* = 14.6, 4.5 Hz, 1H), 2.69 (dd, *J* = 14.6, 10.2 Hz, 1H), 2.51 (dd, *J* = 10.1, 4.5 Hz, 1H), 2.08 - 2.01 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 153.73, 146.50, 140.86, 130.56, 128.55, 127.65, 127.29, 126.38, 124.97, 120.34, 116.51, 114.90, 66.78, 44.62, 38.57, 29.00, 17.34. HRMS (ESI) m/z: calcd for C₁₉H₂₀O M264.1514, found 264.1506.

(4*R*)-4-(2-phenylallyl)-2-(o-tolyl)chromane (3au)

Colorless oil, 40% yield, 2.8:1 dr; $[a]^{20}{}_{D} = -103.6$ (c = 6, CHCl₃); ee was determined to be 98%/96% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol = 99/1, 0.8 mL/min, 254 nm); tr (major) = 19.091 and 23.480 min; ¹H NMR (400 MHz, CDCl₃) δ 7.51 - 7.48 (m, 12H), 7.46 - 7.39 (m, 8H), 7.36 - 7.28 (m, 8H), 7.24 - 7.15 (m, 13H), 7.01 - 6.92 (m, 8H), 5.40 - 5.31 (m, 7H), 5.18 - 5.01 (m, 5H), 3.60 - 3.14 (m, 4H), 3.16 - 3.14 (m, 4H), 2.89 - 2.82 (m, 3H), 2.41 (s, 9H), 2.25 (s, 3H), 2.17 - 2.09 (m, 4H), 1.91 - 1.68 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 155.48, 154.95, 146.48, 146.37, 140.53, 140.43, 139.78, 139.54, 134.83, 134.43, 130.46, 130.42, 129.60, 128.63, 128.54, 127.78, 127.73, 127.64, 127.57, 127.47, 127.02, 126.46, 126.37, 126.28, 125.97, 125.92, 125.72, 125.56, 120.62, 120.36, 117.25, 117.11, 115.50, 115.11, 74.82, 70.21, 44.10, 41.58, 35.16, 32.96, 32.37, 31.59, 19.17, 18.95. HRMS (ESI) m/z: calcd for C₂₅H₂₄O M340.1827, found 340.1823.

(R)-4-(2-cyclohexylallyl)chromane (3av)

Colorless oil, 85% yield; $[a]^{20}_{D}$ = +143.0 (c = 5, CHCl₃); ee was determined to be 98% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol = 98/2, 1.0 mL/min, 254 nm); tr (major) = 4.277 min; ¹H NMR (500 MHz, CDCl₃) δ 7.21 - 7.17 (m, 1H), 7.15 - 7.10 (m, 1H), 6.92 - 6.87 (m, 1H), 6.86 - 6.82 (m, 1H), 4.91 (s, 1H), 4.79 (s, 1H), 4.23 - 4.14 (m, 2H), 3.05 - 2.97 (m, 1H), 2.66 (dd, *J* = 14.7, 4.4 Hz, 1H), 2.26 - 2.17 (m, 1H), 2.08 - 1.98 (m, 1H), 1.98 - 1.91 (m, 2H), 1.89 - 1.77 (m, 4H), 1.77 - 1.71 (m, 1H), 1.39 - 1.24 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 154.57, 152.45, 129.16, 127.32, 126.56, 120.14, 116.81, 109.63, 63.22, 43.52, 42.60, 32.95, 32.21,

31.40, 26.97, 26.76, 26.42, 25.97. HRMS (ESI) m/z: calcd for C₁₈H₂₄O M256.1827, found 256.1819.

(R)-6-methoxy-4-(2-phenylallyl)thiochromane (3aw)

Colorless oil, 57% yield; $[a]^{20}{}_{D}$ = +61.7 (c = 5.1, **CHCl₃**); ee was determined to be 91% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol = 98/2, 1.0 mL/min, 254 nm); tr (major) = 7.819 min; ¹H NMR (400 MHz, CDCl₃) δ 7.52 -7.45 (m, 2H), 7.43 - 7.36 (m, 2H), 7.36 - 7.29 (m, 1H), 7.05 - 7.02 (m, 1H), 6.72 - 6.69 (m, 1H), 6.62 - 6.61 (m, 1H), 5.35 (s, 1H), 5.07 (s, 1H), 3.77 (m, 3H), 3.21 - 3.15 (m, 1H), 3.01 - 2.96 (m, 1H), 2.92 - 2.82(m, 2H), 2.76 - 2.70 (m, 1H), 2.21 - 2.06 (m, 1H), 1.90 - 1.82 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 156.52, 146.21, 140.56, 138.57, 128.58, 127.70. 127.43, 126.38, 123.13, 112.71, 55.38, 40.79, 35.91, 25.32, 22.61. **HRMS (ESI) m/z: calcd for C₁₉H₂₀SO M296.1235, found 296.1229.**

(*R*)-6-methyl-4-(2-phenylallyl)thiochromane (3ax)

Colorless oil, 61% yield; [*a*]²⁰_D = +52.2 (c = 5.3, **CHCl**₃). ee was determined to be 94% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol = 99/1, 0.5 mL/min, 254 nm); tr (major) = 9.127 min; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (s, 2H), 7.44 (s, 2H), 7.38 - 7.31 (m, 1H), 7.05 - 7.00 (m, 1H), 6.92 (m, 1H), 6.86 (m, 1H), 5.36 (m, 1H), 5.11 - 5.05 (m, 1H), 3.26 (s, 1H), 2.99 (m, 1H), 2.93 (m, 2H), 2.77 - 2.67 (m, 1H), 2.29 (m, 3H), 2.16 - 2.06 (m, 1H), 1.90 - 1.78 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 146.27, 140.63, 137.02, 133.34, 130.54, 128.57, 127.68, 127.55, 126.42, 115.15, 40.92, 35.4, 24.89, 22.43, 20.92. **HRMS (ESI) m/z: calcd for C**₁₉H₂₀S [**M+H**]⁺**281.1364, found 281.1357.**

(*R*)-6-fluoro-4-(2-phenylallyl)thiochromane (3ay)

Colorless oil, 80% yield; $[a]^{20}_{D} = +11.2$ (c = 5.1, CHCl₃); ee was determined to be 85% by HPLC analysis with a Chiralcel OJ-3 column (hexane/2-propanol = 99/1, 0.5 mL/min, 254 nm); tr (major) = 24.720 min; ¹H NMR (400 MHz, CDCl₃) δ 7.51 - 7.49 (m, 2H), 7.45 - 7.42 (m, 2H), 7.38 -7.36 (m, 1H), 7.09 - 7.07 (m, 1H), 6.86 - 6.82 (m, 1H), 6.80 - 6.78 (m, 1H), 5.38 (s, 1H), 5.08 (s, 1H), 3.24 - 3.19 (m, 1H), 3.00 - 2.96 (m, 1H), 2.94 - 2.86 (m, 2H), 2.75 - 2.71 (m, 1H), 2.15 - 2.09 (m, 1H), 1.87 - 1.84 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 145.87, 140.36, 128.66, 127.81, 127.70 (d, *J* = 7.6 Hz), 126.37, 116.46, 116.29, 115.46, 114.08, 113.91, 40.74, 35.76, 24.92, 22.54. ¹⁹F NMR (376 MHz, CDCl₃): δ -119.51. **HRMS (ESI) m/z: calcd for C**₁₈**H**₁₇**SF M284.1035, found 284.1030.**

(R)-6-chloro-4-(2-phenylallyl)thiochromane (3az)

Colorless oil, 66% yield; $[a]^{20}_{D} = +75.3$ (c = 5.8, CHCl₃); ee was determined to be 84% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol = 99/1, 0.5 mL/min, 254 nm); tr (major) = 10.670 min; ¹H NMR (400 MHz, CDCl₃) δ 7.48 - 7.47 (m, 2H), 7.43 - 7.40 (m, 2H), 7.36 - 7.32 (m, 1H), 7.04 (s, 2H), 6.99 (s, 1H), 5.35 (s, 1H), 5.06 (s, 1H), 3.24 - 3.17 (m, 2H), 2.96 - 2.83 (m, 3H), 2.72 - 2.67 (m, 1H), 2.14 - 2.08 (m, 1H), 1.86 - 1.78 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 145.81, 140.35, 138.68,129.58, 129.05, 128.66, 127.81, 127.68, 126.71, 126.38, 115.49, 40.69, 35.5, 24.59, 22.44. HRMS (ESI) m/z: calcd for C₁₉H₂₀SCI M300.0739, found 300.0731; calcd for C₁₉H₂₀S³⁷CI M302.0710, found 302.0699.

(*R*)-6-bromo-4-(2-phenylallyl)thiochromane (3ba):

Colorless oil, 82% yield; $[a]^{20}_{D} = +27.0$ (c = 5.2, **CHCl₃**); ee was determined to be 85% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol = 98/2, 1.0 mL/min, 254 nm); tr (major) = 5.416 min; ¹H NMR (400 MHz, CDCl₃) δ 7.48 - 7.46 (m, 2H), 7.43 -7.39 (m, 2H), 7.36 - 7.32 (m, 1H), 7.19 - 7.16 (m, 1H), 7.13 -7.12 (d, *J* = 1.8 Hz, 1H), 6.98 - 6.96 (d, *J* = 8.4 Hz, 1H), 5.35 (s, 1H), 5.05 (s, 1H), 7.30 -7.32 (m, 1H), 3.23 - 3.16 (m, 1H), 2.95 - 2.83 (m, 3H), 2.71 - 2.66 (m, 1H), 2.14 - 2.08 (m, 1H), 1.85 - 1.77 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 145.80, 140.34,139.03, 131.56, 129.53, 128.66, 127.98, 127.80, 126.38, 116.76, 115.51, 40.68, 35.44, 24.52, 22.39. **HRMS (ESI) m/z: calcd for C**₁₈H₁₇SBr M344.0234, found 344.0232; calcd for C₁₈H₁₇S⁸¹Br M346.0214, found 346.0211.

Colorless oil, 35% yield; [*a*]²⁰_D = +49.2 (c = 5.3, CHCl₃); ee was determined to be 81% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol = 98/2, 1.0 mL/min, 254 nm); tr (major) = 6.947 min; ¹H NMR (400 MHz, CDCl₃) δ7.44 - 7.42 (m, 2H), 7.12 - 6.99 (m, 4H), 6.95 - 6.93 (m, 2H), 0.86 (s, 1H), 4.97 (s, 1H), 3.85 (s, 3H), 3.27 - 3.19 (m, 1H), 2.95 - 2.87 (m, 3H), 2.86 - 2.83 (m, 1H), 2.14 - 2.10 (m, 1H), 1.89 - 1.80 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ159.24, 145.38, 137.2, 132.89, 132.24, 129.91, 127.49, 126.57, 126.51, 123.78, 113.91, 55.33, 41.04, 35.40, 24.71, 22.44. HRMS (ESI) m/z: calcd for C₁₉H₂₀OS [M+H]⁺297.1313, found 297.1304.

(*R*)-4-(2-(4-chlorophenyl)allyl)thiochromane (3bc)

Colorless oil, 50% yield; $[a]^{20}{}_{D}$ = -20.6 (c = 4, CHCl₃); ee was determined to be 89% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol = 98/2, 1.0 mL/min, 254 nm); tr (major) = 7.556 min; ¹H NMR (400 MHz, CDCl₃) δ 7.42 - 7.35 (m, 4H), 7.12 - 7.05 (m, 2H), 7.01 - 6.96 (m, 2H), 5.35 (s, 1H), 5.07 (s, 1H), 3.24 - 3.17 (m, 1H), 2.92 - 2.85 (m, 3H), 2.72 - 2.65 (m, 1H), 2.13 - 2.06 (m, 1H), 1.90 - 1.81 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 145.05, 139.00, 136.83, 133.47, 132.24, 129.83, 128.73, 127.68, 126.68, 126.58, 123.82, 115.72, 40.76, 35.49, 24.82, 22.41. HRMS (ESI) m/z: calcd for C₁₈H₁₇SCl M300.0739, found 300.0731; calcd for C₁₈H₁₇S³⁷Cl M302.0710, found 302.0703.

(*R*)-4-(2-(o-tolyl)allyl)thiochromane (3bd)

Colorless oil, 65% yield; $[a]^{20}_{D} = -119.6$ (c = 5, CHCl₃); ee was determined to be 96% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol = 98/2, 1.0 mL/min, 254 nm); tr (major) = 4.922 min; ¹H NMR (400 MHz, CDCl₃) δ 7.27 - 7.24 (m, 4H), 7.16 - 7.14 (m, 1H), 7.11 - 7.07 (m, 1H), 7.03 - 6.98 (m, 1H), 5.30 (s, 1H), 5.10 (s, 1H), 3.28 - 3.21 (m, 1H), 2.94 - 2.82 (m, 3H), 2.73 - 2.66 (m, 1H), 2.74 (s, 3H), 2.30 - 2.25 (m, 1H), 2.01 - 1.93 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 147.44, 141.83, 137.50, 134.95, 132.49, 130.61, 129.82, 128.56, 127.21, 126.59, 125.74, 123.97, 117.00, 43.12, 35.53, 24.92, 22.63, 20.30. **HRMS (ESI) m/z: calcd for C₁₉H₂₀S M280.1286, found 280.1278.**

(*R*)-triisopropyl((4-(2-phenylallyl)chroman-6-yl)ethynyl)silane (3be)

Colorless oil, 40% yield; $[a]^{20}{}_{D}$ = -76.8 (c = 5.2, CHCl₃). ee was determined to be 99% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol = 99/1, 0.2 mL/min, 254 nm); tr (major) = 18.134 min; ¹H NMR (500 MHz, CDCl₃) δ 7.50 - 7.46 (m, 2H), 7.41 - 7.36 (m, 2H), 7.34 - 7.29 (m, 1H), 7.27 (d, *J* = 2.0 Hz, 1H), 7.21 (dd, *J* = 8.4, 2.1 Hz, 1H), 6.71 (d, *J* = 8.4 Hz, 1H), 5.36 (s, 1H), 5.08 (s, 1H), 4.24 - 4.04 (m, 2H), 3.16 (ddd, *J* = 14.4, 4.9, 1.5 Hz, 1H), 2.89 - 2.75 (m, 1H), 2.66 - 2.50 (m, 1H), 1.96 - 1.72 (m, 2H), 1.14 (s, 21H). ¹³C NMR (125 MHz, CDCl₃) δ 154.77, 146.07, 140.44, 132.90, 131.51, 128.61, 127.78, 126.36, 126.02, 116.87, 115.29, 115.07, 107.49, 88.21, 63.41, 42.42, 31.18, 25.76, 18.75, 11.41. HRMS (ESI) m/z: calcd for C₂₉H₃₈OSi [M+H]⁺431.2770, found 431.2761.

Colorless oil, 40% yield; [*a*]²⁰_D = 7.6 (c = 5.1, CHCl₃). ee was determined to be 98% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol = 95/5, 1.0 mL/min, 254 nm); tr (major) = 17.573 min; ¹H NMR (500 MHz, CDCl₃) δ 7.46 - 7.40 (m, 2H), 7.37 - 7.31 (m, 2H), 7.31 - 7.26 (m, 1H), 7.06 - 7.01 (m, 2H), 6.93 - 6.88 (m, 1H), 6.86 - 6.80 (m, 3H), 6.75 - 6.71 (m, 1H), 5.36 (s, 1H), 5.09 (s, 1H), 4.18 - 4.05 (m, 2H), 3.13 (ddd, *J* = 14.3, 4.6, 1.5 Hz, 1H), 2.84 - 2.73 (m, 1H), 2.63 - 2.51 (m, 1H), 2.28 (s, 3H), 1.94 - 1.83 (m, 1H), 1.82 - 1.74 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 149.78, 146.20, 142.66, 140.45, 135.81, 129.80, 129.05, 128.53, 127.67, 126.75, 126.28, 120.71, 120.11, 117.34, 116.25, 115.08, 63.18, 42.76, 31.52, 26.10, 20.56. HRMS (ESI) m/z: calcd for C₂₅H₂₅ON [M+H]⁺356.2014, found 356.2004.

5. Crystal data and structure refinement of compound 3ao

Table S1 Crystal data and structure refinement for compound 3ao.

3ao
$C_{20}H_{22}O_3$
310.37
100
orthorhombic
$P2_{1}2_{1}2_{1}$
6.4702(3)
9.9613(4)
25.6312(11)
90
90
90
1651.97(12)
4
1.248
0.660
664.0
$0.41\times0.35\times0.33$
$CuK\alpha \ (\lambda = 1.54178)$
6.898 to 137.206
-7 \leq h \leq 7, -10 \leq k \leq 12, -30 \leq l \leq 30
19161
$3041 [R_{int} = 0.0370, R_{sigma} = 0.0217]$
3041/0/211
1.034
$R_1 = 0.0252, wR_2 = 0.0639$
$R_1 = 0.0261, wR_2 = 0.0645$
0.16/-0.14
-0.12(6)

Atom	x	<i>y</i>	z	U(eq)
01	-7735.9(18)	-5095.8(12)	-4714.8(4)	24.8(3)
O2	-4537.1(18)	-3596.8(11)	-4555.0(4)	22.6(3)
03	-8212.8(18)	-3287.8(11)	-981.5(4)	21.9(3)
C1	-9477(3)	-5936.4(19)	-4821.5(7)	30.9(4)
C2	-7077(2)	-5033.1(16)	-4209.2(5)	18.4(3)
C3	-5314(2)	-4222.3(15)	-4122.6(6)	17.5(3)
C4	-4530(2)	-4083.0(14)	-3625.7(6)	17.2(3)
C5	-5452(2)	-4725.8(14)	-3194.0(5)	15.7(3)
C6	-4565(2)	-4549.1(14)	-2661.5(5)	16.3(3)
C7	-5761(2)	-5080.5(15)	-2198.7(5)	16.4(3)
C8	-7698(2)	-4232.1(14)	-2064.8(6)	16.5(3)
C9	-9008(2)	-4928.4(15)	-1656.8(6)	16.0(3)
C10	-9215(2)	-4421.7(15)	-1151.1(6)	17.6(3)
C11	-10515(3)	-5041.7(17)	-788.5(6)	21.8(3)
C12	-11603(3)	-6180.3(17)	-928.3(6)	24.0(3)
C13	-2841(3)	-2693.4(17)	-4472.1(6)	26.7(4)
C14	-7142(3)	-2819.3(15)	-1875.3(6)	21.1(3)
C15	-6523(3)	-2853.0(16)	-1304.6(6)	22.6(3)
C16	-10121(2)	-6087.9(15)	-1783.0(6)	19.2(3)
C17	-11399(3)	-6716.9(17)	-1427.5(6)	22.9(3)
C18	-2771(3)	-3928.7(16)	-2579.4(6)	20.9(3)
C19	-7185(2)	-5511.1(14)	-3287.5(6)	18.0(3)
C20	-7993(3)	-5668.7(15)	-3790.7(6)	19.8(3)

Table S2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for compound 3ao. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Table S3 Anisotropic Displacement Parameters (Å2×103) for compound 3ao. TheAnisotropic displacement factor exponent takes the form: - $2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...].$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	27.8(6)	30.0(6)	16.7(5)	1.5(4)	-3.8(4)	-8.6(5)
02	26.4(6)	25.2(6)	16.2(5)	3.9(4)	0.8(4)	-8.3(5)
03	26.3(6)	20.4(5)	18.9(5)	-3.0(4)	3.8(4)	-5.4(5)
C1	30.8(9)	39.9(10)	21.8(8)	-2.8(7)	-5.0(7)	-12.7(8)
C2	20.0(7)	18.6(7)	16.5(7)	-0.6(5)	-1.7(6)	1.7(6)
C3	20.0(7)	15.7(7)	16.7(7)	2.7(5)	3.1(6)	1.2(6)
C4	16.7(7)	14.4(7)	20.4(7)	0.4(6)	0.6(6)	0.3(6)

C5	16.1(7)	13.5(6)	17.5(7)	0.7(5)	0.8(5)	3.4(6)
C6	17.9(7)	13.0(7)	18.0(7)	1.8(5)	0.5(6)	3.7(6)
C7	17.8(7)	15.7(7)	15.8(7)	1.4(5)	-0.4(5)	1.3(6)
C8	17.1(7)	16.1(7)	16.2(7)	2.1(5)	0.0(6)	0.9(6)
C9	14.6(7)	16.2(7)	17.4(7)	3.1(6)	-0.1(5)	2.4(6)
C10	17.5(7)	15.3(7)	20.0(7)	0.9(6)	-0.6(6)	0.6(6)
C11	22.9(7)	24.3(8)	18.3(7)	2.5(6)	2.5(6)	1.2(7)
C12	21.2(8)	25.6(8)	25.2(8)	8.4(6)	4.3(7)	-2.6(7)
C13	30.6(9)	29.2(8)	20.1(8)	3.2(6)	2.6(7)	-12.6(7)
C14	24.6(8)	15.8(7)	22.8(8)	2.0(6)	5.1(6)	0.2(6)
C15	23.7(8)	19.1(8)	25.0(8)	-3.8(6)	4.0(6)	-5.3(7)
C16	19.3(7)	19.2(7)	19.1(7)	0.2(6)	-1.2(6)	0.7(6)
C17	20.6(7)	20.8(8)	27.4(8)	4.1(6)	-2.3(6)	-4.2(6)
C18	18.3(7)	25.7(8)	18.8(7)	4.0(6)	-1.7(6)	-0.1(6)
C19	18.6(7)	17.8(7)	17.6(7)	2.6(5)	2.4(6)	0.5(6)
C20	19.4(7)	17.9(7)	22.2(7)	-0.4(6)	-0.1(6)	-2.3(6)

Table S4 Bond Lengths for compound 3ao.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C1	1.430(2)	C6	C18	1.332(2)
01	C2	1.3655(17)	C7	C8	1.550(2)
02	C3	1.3672(18)	C8	C9	1.514(2)
O2	C13	1.435(2)	C8	C14	1.532(2)
03	C10	1.3731(19)	C9	C10	1.397(2)
03	C15	1.4384(19)	C9	C16	1.399(2)
C2	C3	1.415(2)	C10	C11	1.397(2)
C2	C20	1.379(2)	C11	C12	1.382(2)
C3	C4	1.378(2)	C12	C17	1.393(2)
C4	C5	1.411(2)	C14	C15	1.517(2)
C5	C6	1.491(2)	C16	C17	1.381(2)
C5	C19	1.388(2)	C19	C20	1.401(2)
C6	C7	1.5118(19)			

Table S5 Bond Angles for compound 3ao.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C2	01	C1	117.00(12)	C9	C8	C7	110.84(11)
C3	02	C13	116.55(12)	C9	C8	C14	109.47(12)
C10	03	C15	115.12(12)	C14	C8	C7	112.41(13)
01	C2	C3	115.24(13)	C10	C9	C8	121.93(13)
01	C2	C20	125.66(14)	C10	C9	C16	117.60(13)

C20	C2	C3	119.09(13)	C16	C9	C8	120.44(13)
02	C3	C2	115.43(13)	O3	C10	C9	123.06(13)
02	C3	C4	124.60(14)	O3	C10	C11	115.93(13)
C4	C3	C2	119.95(13)	C11	C10	C9	121.00(14)
C3	C4	C5	121.57(14)	C12	C11	C10	119.79(14)
C4	C5	C6	120.12(13)	C11	C12	C17	120.32(14)
C19	C5	C4	117.52(13)	C15	C14	C8	110.34(12)
C19	C5	C6	122.36(13)	O3	C15	C14	111.18(13)
C5	C6	C7	118.69(13)	C17	C16	C9	122.03(14)
C18	C6	C5	122.32(14)	C16	C17	C12	119.26(15)
C18	C6	C7	118.98(13)	C5	C19	C20	121.58(14)
C6	C7	C8	113.36(12)	C2	C20	C19	120.29(14)

Table S6 Torsion Angles for compound 3ao.

Α	B	C	D	Angle/°	Α	B	С	D	Angle/°
01	C2	C3	02	1.1(2)	C8	C9	C10	C11	176.70(14)
01	C2	C3	C4	179.58(13)	C8	C9	C16	C17	-177.23(14)
01	C2	C20	C19	-179.12(15)	C8	C14	C15	03	-62.91(17)
02	C3	C4	C5	177.93(13)	C9	C8	C14	C15	43.23(17)
03	C10	C11	C12	179.27(14)	C9	C10	C11	C12	0.6(2)
C1	01	C2	C3	178.20(14)	C9	C16	C17	C12	0.4(2)
C1	01	C2	C20	-2.6(2)	C10	03	C15	C14	47.98(18)
C2	C3	C4	C5	-0.4(2)	C10	C9	C16	C17	0.5(2)
C3	C2	C20	C19	0.0(2)	C10	C11	C12	C17	0.4(2)
C3	C4	C5	C6	-179.81(13)	C11	C12	C17	C16	-0.9(2)
C3	C4	C5	C19	0.1(2)	C13	02	C3	C2	175.68(14)

Table S7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for compound 3ao.

Atom	x	У	Z	U(eq)
H1A	-10672.52	-5619.65	-4621.61	46
H1B	-9154.99	-6862.27	-4720.93	46
H1C	-9796.46	-5903.37	-5195	46
H4	-3340.13	-3541.24	-3572.52	21
H7A	-4837.17	-5102.65	-1890.92	20
H7B	-6197.51	-6013.74	-2272.94	20
H8	-8545.5	-4140.78	-2389.12	20
H11	-10650.21	-4681.81	-446.93	26
H12	-12493.68	-6599.08	-682.68	29
H13A	-1638.44	-3198.51	-4347.78	40

H13B	-3230.76	-2020.59	-4211.04	40
H13C	-2496.28	-2243.92	-4800.89	40
H14A	-5984.95	-2461.38	-2086.3	25
H14B	-8344.57	-2216.3	-1921.04	25
H15A	-5339.62	-3471.91	-1258.86	27
H15B	-6076.84	-1945.66	-1194.31	27
H16	-9994.53	-6453.61	-2123.81	23
H17	-12130.88	-7506.84	-1522.31	28
H18A	-2008.62	-3580.33	-2865.72	25
H18B	-2253.5	-3834.62	-2234.42	25
H19	-7838.56	-5952.2	-3003.32	22
H20	-9176.87	-6215.78	-3844.03	24

Experimental

Single crystals of C₂₀H₂₂O₃ [compound 3ao] were []. A suitable crystal was selected and [] on a Bruker CMOS area detector diffractometer. The crystal was kept at 100 K during data collection. Using Olex2 [1], the structure was solved with the SHELXT [2] structure solution program using Intrinsic Phasing and refined with the SHELXL [3] refinement package using Least Squares minimisation.

Crystal structure determination of [compound 3ao]

Crystal Data for C₂₀H₂₂O₃ (M =310.37 g/mol): orthorhombic, space group P2₁2₁2₁ (no. 19), a = 6.4702(3) Å, b = 9.9613(4) Å, c = 25.6312(11) Å, V =1651.97(12) Å³, Z = 4, T = 100 K, μ (CuK α) = 0.660 mm⁻¹, *Dcalc* = 1.248 g/cm³, 19161 reflections measured ($6.898^{\circ} \le 2\Theta \le 137.206^{\circ}$), 3041 unique ($R_{int} = 0.0370$, $R_{sigma} = 0.0217$) which were used in all calculations. The final R_1 was 0.0252 (I > 2σ (I)) and wR_2 was 0.0645 (all data). 6. Copies of ¹H NMR, ¹³C NMR, ¹⁹F NMR and HPLC spectra of the products Compound 3aa

Compound 3ab

Compound 3ac

Compound 3ae

Compound 3af

Compound 3ag

Compound 3ah

Compound 3ai

Compound 3aj

Compound 3ak

Compound 3al

Compound 3am

Compound 3au

Compound 3av

Compound 3ax

Compound 3az

Compound 3bb

Compound 3bf

Compound 3ac

Compound 3ae

Compound 3af

Compound 3ag

Compound 3ah

Compound 3ai

Compound 3aj

Compound 3ak

Compound 3al

Compound 3am

Compound 3an

Compound 3ao

Signa	1 1: DAD	Ш					
Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
 1	4.093	 BV E	0.0825	125.71877	23.46672	4.0441	() OM
2	4.317	VB R	0.0823	2982.98145	558.38873	95.9559	~ 0

_OMe

Compound 3aq

Compound 3as

DAD1 B, Sig=254,4 Ref=off (D:\ChemStation\data\cbh\zx\zx-145A.D)

Compound 3at

Compound 3av

Compound 3aw

Compound 3az

Compound 3bb

Compound 3bc

DAD1 B, Sig=254,4 Ref=off (D:\ChemStation\data\cbh\zx\ZX-179B-CAT.D)

Compound 3be

Compound 3bf

7. Study of time of LPS on RAW 264.7 cell

Figure S1. Different time and concentration of LPS on ELISA assay experiments. RAW 264.7 cells were plated in a 96-well plate and treated with LPS. The culture supernatant was collected. The concentrations of IL-6 and TNF- α in the culture supernatant of RAW 264.7 cells were determined according to the manufacturer's instructions of the Duo-set ELISA kits, purchased from Jonln Co. Ltd. (Shanghai, China). The absorbance was measured at 450 nm. Data from three times independent experiments were expressed as means \pm SD. *p < 0.05 compared with the control group. References

1. M. V. Vita, P. Caramenti and J. Waser, Organic Letters, 2015, 17, 5832-5835.