Supplementary Materials for
 \section*{Asymmetric synthesis of chiral (thio)chromanes and exploration on} their structure-activity relationship in macrophages

 a, c*
a School of Biological Science, The University of Hong Kong, Hong Kong 999077, China
b Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055,

China

c Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study,

Shenzhen University, Shenzhen 518060, China
d Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
e School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
f. Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University,

Hong Kong 999077, China

This PDF file includes:

General information
Table S1 to S7
Figure S1
References

1. General information

All the air or moisture sensitive reactions and manipulations were performed under an atmosphere of argon by using standard Schlenk techniques and Drybox (Mikrouna, Supper 1220/750). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker-Avance 400 or 500 MHz spectrometer. CDCl_{3} was used as solvent. Chemical shifts (δ) were reported in ppm with tetramethylsilane as internal standard, and J values were given in Hz . The following abbreviations were used to explain the multiplicities: $\mathrm{s}=\operatorname{sing}$ let, d $=$ doublet, $\mathrm{dd}=$ double of doublets, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet. Flash column chromatograph was carried out using 200-300 mesh silica gel at medium pressure. High resolution mass spectra (HRMS) were recorded on a LC-TOF spectrometer. ESIHRMS data were acquired using a Thermo LTQ Orbitrap XL Instrument equipped with an ESI source. Optical rotation was obtained on a Rudolph Research Analytical (Atopol I). HPLC analysis was performed on Agilent 1260 series, UV detection monitored at 230 or 220 nm . Tetrahydrofuran was distilled over sodium.

2. Preparation of substrates

The substrate allyl phosphate was prepared according to the literature ${ }^{1}$.

Reaction procedure: To add $\mathrm{CuI}(10 \mathrm{mmol}, 1.95 \mathrm{~g})$ to a 250 mL two-mouth flask, and the flask was evacuated and backfilled with nitrogen for three times, then to add 30 mL THF to the flask and add phenyl magnesium bromide ($\mathrm{PhMgBr}, 50 \mathrm{mmol}, 50 \mathrm{~mL}$) at 0 ${ }^{\circ} \mathrm{C}$. After stirring for half an hour, propargyl alcohol ($20 \mathrm{mmol}, 2.9 \mathrm{~mL}$) solution was added dropwise at $0^{\circ} \mathrm{C}$. Then the mixture was allowed to stir at rt for 20 h . The reaction was quenched carefully by aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution in ice-water bath. The biphase system was extracted by ethyl acetate for three times ($100 \mathrm{~mL} \times 3$) and then the combined organic phase was washed by brine for three times ($100 \mathrm{~mL} x \mathrm{3}$). The organic phase was dried over MgSO_{4}, concentrated in vacuo and the residue was purified by
silica gel column chromatography ($\mathrm{pe} / \mathrm{ea}=20 / 1, \mathrm{v} / \mathrm{v}$) $)$ to provide allyl alcohol (17.2 mmol, 2.3 g).

To add DCM (30 mL) to a 100 mL round-bottom flask containing the substrate allyl alcohol and stir. And then to add phenyl chlorophosphate ($25.8 \mathrm{mmol}, 5.5 \mathrm{~mL}$) and DMAP ($0.86 \mathrm{mmol}, 0.235 \mathrm{~g}$). Then triethylamine ($34.4 \mathrm{~mol}, 4.5 \mathrm{~mL}$) was added dropwise at $0^{\circ} \mathrm{C}$ and then stirred at rt for 2 h . The reaction was quenched carefully by aqueous saturated NaHCO_{3} solution. The biphase system was extracted by DCM for three times (100 mL x 3$)$ and then the combined organic phase was washed by brine for three times ($100 \mathrm{~mL} x$ 3). The organic phase was dried over MgSO_{4}, concentrated in vacuo and the residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EA}=$ $10 / 1, \mathrm{v} / \mathrm{v}$) to provide allyl phosphate ($15.3 \mathrm{mmol}, 5.6 \mathrm{~g}$).

3. Preparation for 4-allyl chromanes compounds

The specific operation of copper(I) hydride-catalyzed hydroallylation was as follows:

$\mathrm{CuCl}(0.01 \mathrm{mmol}, 1.0 \mathrm{mg}), \mathrm{L} 1(0.011 \mathrm{mmol}, 5.6 \mathrm{mg})$ and THF $(0.5 \mathrm{~mL})$ were added into the reaction tube $(10.0 \mathrm{~mL})$ in a glove box filled with argon atmosphere. After stirring for 10 min at room temperature, phenylsilane (0.5 mol) was added, followed by stirring for 10 min at room temperature, followed by allyl phosphate (0.5 mmol), $\mathrm{LiO} t \mathrm{Bu}(0.5 \mathrm{mmol}, 40.0 \mathrm{mg})$, and chromene $(0.2 \mathrm{mmol})$. The reaction tube was removed from the glove box and stirred at rt for 24 h . At the end of the reaction, the reaction was filtered through the funnel with EA and concentrated in vacuo and the residue was purified by silica gel column chromatography (PE) to provide chromane compound. The ee value of the product was determined by HPLC. Diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR.

4. Characterization data (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19}$ F NMR, HRMS, and HPLC) of the products

(R)-4-(2-phenylallyl)chromane (3aa)

Colorless oil, 91\% yield; $[a]^{20}{ }_{\mathrm{D}}=-4.6\left(\mathrm{c}=7.4, \mathbf{C H C l}_{3}\right)$; ee was determined to be 99% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol $=95 / 5,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}) ; \operatorname{tr}($ major $)=5.389 \mathrm{~min} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.79(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H})$, $5.11(\mathrm{~s}, 2 \mathrm{H}), 4.33-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.21(\mathrm{dd}, J=14.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dq}, J=10.1$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=14.3,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.77(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $8154.18,146.30,141.21,140.56,133.35,128.76,128.64,127.79,127.78$, 126.81, 126.63, 126.37, 117.23, 115.21, 63.35, 42.77, 31.61, 26.06. HRMS (ESI) m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}$ M250.1358, found 250.1350 .

(R)-6-methoxy-4-(2-phenylallyl)chromane (3ab)

Colorless oil, $\mathbf{6 4 \%}$ yield; $[a]^{20}{ }_{\mathrm{D}}=-117.2\left(\mathrm{c}=5, \mathbf{C H C l}_{3}\right)$; ee was determined to be 95% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol $=98 / 2,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}$); tr (major) $=7.465 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.46$ $(\mathrm{m}, 2 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.66(\mathrm{~m}, 3 \mathrm{H}), 5.38(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.10(\mathrm{td}, J=1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.18$ (ddd, J $=14.5,4.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dq}, J=10.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.54(\mathrm{~m}, 1 \mathrm{H}), 1.90$ (dddd, $J=14.7,9.3,5.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.79 (dtd, $J=13.9,5.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.18,148.60,146.31,140.53,128.58,127.73,126.84$, $126.31,117.25,115.10,114.08,113.11,63.20,55.80,42.79,31.71,26.16$. HRMS (ESI) m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{\mathbf{2 0}} \mathrm{O}_{\mathbf{2}}$ M280.1463, found 280.1450.

(R)-6-methyl-4-(2-phenylallyl)chromane (3ac)

Colorless oil, $\mathbf{6 7 \%}$ yield; $[a]^{20}{ }_{D}=-270.6\left(c=4.1, \mathbf{C H C l}_{3}\right)$; ee was determined to be 98% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol $=98 / 2,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}) ; \operatorname{tr}($ major $)=4.544 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56-7.50$ (m, 2H), 7.47-7.39 (m, 2H), 7.38-7.32 (m, 1H), 7.01 (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ (dd, J $=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.25-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.23$ (ddd, $J=14.3,4.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dq}, J=10.2$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=14.3,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{dtd}, J=25.2,5.5,3.5$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 152.30,146.38,140.63,129.27,128.55$, $128.08,127.69,126.33,125.84,116.56,114.99,63.14,42.73,31.39,25.97,20.65$. HRMS (ESI) m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{\mathbf{2 0}} \mathrm{O}$ M264.1514, found 264.1509.

Colorless oil, 66\% yield; $[a]^{20}{ }_{\mathrm{D}}=+43.3\left(\mathrm{c}=5, \mathbf{C H C l}_{3}\right)$; ee was determined to be 99% by HPLC analysis with a Chiralcel IC column (hexane $/ 2$-propanol $=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}$, $254 \mathrm{~nm})$; tr (major) $=5.194 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.47(\mathrm{~m}, 2 \mathrm{H})$, 7.45-7.38 (m, 2H), 7.38-7.31 (m, 1H), 7.28 (s, 2H), 7.19 (dd, $J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.70(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.21-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{dd}, J=$ $14.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=10.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=14.2,10.7 \mathrm{~Hz}, 1 \mathrm{H})$, 1.96-1.75 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 153.63, 145.92, 140.31, 131.51, $130.26,128.63,128.25,127.81,126.29,118.66,115.38,112.09,63.27,42.56,31.37$, 25.52. HRMS (ESI) m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathbf{O B r}$ M328.0463, found 328.0448; calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}^{81} \mathrm{Br}$ M330.0442, found 330.0430.

Colorless oil, 70\% yield; $[a]^{20}{ }_{D}=-14.1\left(c=5, \mathbf{C H C l}_{3}\right)$; ee was determined to be 97% by HPLC analysis with a Chiralcel ODH column (hexane/2-propanol $=98 / 2,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}) ; \operatorname{tr}($ major $)=4.963 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.47$ (m, 2H), $7.42(\mathrm{dd}, J=8.4,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.06$ (dd, $J=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J$ $=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{ddd}, J=14.3,4.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dq}, J=$ $10.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.58 (dd, $J=14.3,10.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.97-1.77(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.12,145.94,140.33,128.63,128.56,127.80,127.66,127.38$, $126.29,124.75,118.17,115.36,63.30,42.57,31.42,25.58$. HRMS (ESI) m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{OCl} \mathrm{M} 284.0968$, found 284.0961; calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}^{37} \mathrm{Cl} \mathrm{M} 286.0938$, found 286.0933.

(R)-6-phenyl-4-(2-phenylallyl)chromane (3af)

Colorless oil, 72\% yield; $[a]^{20} \mathrm{D}=+33.1\left(\mathrm{c}=5, \mathrm{CHCl}_{3}\right)$; ee was determined to be 75% by HPLC analysis with a Chiralcel AD-H column (hexane/2-propanol $=98 / 2,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}$); tr (major) $=9.055 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54-7.51$ $(\mathrm{m}, 2 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.29(\mathrm{~m}$, 2H), $6.88-6.85(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.16$ (dddd, J = 24.2, 11.0, 5.3, 3.4 $\mathrm{Hz}, 2 \mathrm{H}), 3.22(\mathrm{ddd}, \mathrm{J}=14.3,4.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dq}, \mathrm{J}=10.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}$, $\mathrm{J}=14.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.80(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 154.21,146.32,141.23,140.58,135.82,133.37,128.79,128.67,127.82$, 127.80, 126.83, 126.69, 126.66, 126.40, 117.26, 115.24, 63.37, 42.78, 31.63, 26.08. HRMS (ESI) m/z: calcd for $\mathrm{C}_{24} \mathrm{H}_{\mathbf{2 2}} \mathrm{O}$ M326.1671, found 326.1668.

(R)-4-(2-phenylallyl)-3,4-dihydro-2H-benzo[h]chromene (3ag)

Colorless oil, 70\% yield; $[a]^{20}{ }_{\mathrm{D}}=-42.1\left(\mathrm{c}=5, \mathbf{C H C l}_{3}\right)$; ee was determined to be 97% by HPLC analysis with a Chiralcel IC column (hexane $/ 2$-propanol $=99 / 1,0.5 \mathrm{~mL} / \mathrm{min}$, $254 \mathrm{~nm})$; tr (major) $=9.040 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.26-8.19(\mathrm{~m}, 1 \mathrm{H})$, 7.83-7.75 (m, 1H), 7.60-7.56(m, 2H), 7.51-7.47(m, 2H), 7.47-7.42(m, 2H), 7.42 - 7.35 (m, 2H), 7.31 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.44$ (d, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ (q, $J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.45-4.31(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{ddd}, J=14.4,4.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dq}, J=9.8,4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.65$ (dd, $J=14.4,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-1.92$ (m, 2H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right)$ 8149.53, 146.42, 140.68, 133.19, 128.62, 127.75, 127.38, 127.11, 126.41, 125.84, 125.27, 125.24, 121.70, 119.65, 119.53, 115.12, 63.24, 43.03, 31.56, 25.73. HRMS (ESI) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} \mathbf{3 0 1 . 1 5 9 2}$, found 301.1586.

(R)-4-(2-(4-methoxyphenyl)allyl)chromane (3ah)

Colorless oil, 86\% yield; $[a]^{20}{ }_{\mathrm{D}}=-59.9\left(\mathrm{c}=5, \mathbf{C H C l}_{3}\right)$; ee was determined to be 98% by HPLC analysis with a Chiralcel OD-H column hexane/2-propanol $=98 / 2,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}) ; \operatorname{tr}($ major $)=7.624 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{td}, \mathrm{J}=$ $7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.33-4.09$ (m, 2H), 3.87 (s, 3H), 3.19 (ddd, $J=14.3,4.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dq}, J=10.2,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.58(\mathrm{dd}, J=14.3,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.78(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.27,154.51,145.53,132.89,129.02,127.41,126.28,120.17,116.82,113.92$, $113.55,63.19,55.33,42.80,31.41,25.87$. HRMS (ESI) \mathbf{m} / \mathbf{z} : calcd for $\mathbf{C}_{\mathbf{1 9}} \mathbf{H}_{\mathbf{2 0}} \mathbf{O}_{\mathbf{2}}$ M280.1463, found 280.1459.

(R)-4-(2-(4-(tert-butyl)phenyl)allyl)chromane (3ai)

Colorless oil, $\mathbf{6 0 \%}$ yield; $[a]^{20}{ }_{\mathrm{D}}=-24.4\left(\mathrm{c}=6.2, \mathbf{C H C l}_{3}\right)$; ee was determined to be 98% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol $=98 / 2,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}) ; \operatorname{tr}($ major $)=10.784 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-7.46$ (m, 2H), 7.46-7.42 (m, 2H), 7.23 (dt, $J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.92$ (td, $J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 4.26$ - $4.10(\mathrm{~m}, 2 \mathrm{H}), 3.22$ (ddd, $J=14.3,4.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{dq}, J=10.2,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.60(\mathrm{dd}, J=14.3,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 154.52,150.72,145.85,137.40,129.06,127.37,126.31,125.92,125.46$, 120.16, 116.81, 114.34, 63.20, 42.70, 34.57, 31.35 ($\mathrm{d}, J=3.2 \mathrm{~Hz}$), 25.92. HRMS (ESI) m / z : calcd for $\mathrm{C}_{22} \mathrm{H}_{\mathbf{2 6}} \mathrm{O}$ M306.1984, found 306.1971.
(R)-4-(2-(p-tolyl)allyl)chromane (3aj)

Colorless oil, 76\% yield; $[a]^{20}{ }_{\mathrm{D}}=-99.6\left(\mathrm{c}=5, \mathbf{C H C l}_{3}\right)$; ee was determined to be 94% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol $=98 / 2,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}) ; \operatorname{tr}($ major $)=5.427 \mathrm{~min} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=8.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.27-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.20$ (ddd, $J=14.4,4.6$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dq}, J=10.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=14.3,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~s}$, 3H), 2.05-1.75 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 154.51, 146.05, 137.58, $137.51,129.26,129.02,127.37,126.19,120.15,116.80,114.29,63.18,42.75,31.38$, 25.87, 21.14. HRMS (ESI) m/z: calcd for $\mathbf{C}_{19} \mathbf{H}_{20} \mathbf{O}$ M264.1514, found 264.1507.
(R)-4-(2-(4-fluorophenyl)allyl)chromane (3ak)

Colorless oil, $\mathbf{8 0 \%}$ yield; $[a]^{20}{ }_{\mathrm{D}}=-7.8\left(\mathrm{c}=5, \mathbf{C H C l}_{3}\right)$; ee was determined to be 97% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol $=98 / 2,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}) ; \operatorname{tr}($ major $)=6.564 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53-7.44$ (m, 2H), 7.21-7.06 (m, 4H), 6.92-6.89 (m, 1H), $6.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H})$, $5.11(\mathrm{~s}, 1 \mathrm{H}), 4.25-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{ddd}, J=14.4,4.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.84(\mathrm{~m}$, $1 \mathrm{H}), 2.60(\mathrm{dd}, J=14.4,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.80(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.42,161.46,154.51,145.29,136.62(\mathrm{~d}, J=3.5 \mathrm{~Hz})$, $128.95,127.91$ (d, $J=7.9 \mathrm{~Hz}), 127.50,125.99,120.21,116.89,115.45(\mathrm{~d}, J=21.3 \mathrm{~Hz})$, 115.06, 63.12, 42.85, 31.37, 25.88. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{33 a y}$) $\delta-114.71$. HRMS (ESI) m / z : calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{OF}$ M268.1263, found 268.1255.

(R)-4-(2-(4-chlorophenyl)allyl)chromane (3al)

Colorless oil, $\mathbf{5 1 \%}$ yield; $[a]^{20}{ }_{\mathrm{D}}=-63.7\left(\mathrm{c}=5.8, \mathbf{C H C l}_{3}\right)$; ee was determined to be 97% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol $=98 / 2,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}) ; \operatorname{tr}($ major $)=7.192 \mathrm{~min} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.42$ (m, 2H), 7.40-7.36 (m, 2H), 7.18-7.10 (m, 2H), $6.90(\mathrm{td}, J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.83$ (dd, $J=8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.12$ (m, 2H), 3.16 (ddd, $J=14.4,4.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dq}, J=10.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}$, $J=14.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.76(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.48$, 145.19, 139.00, 133.52, 128.93, 128.74, 127.62, 127.51, 125.89, 120.21, 116.89, 115.60, 63.09, 42.63, 31.38, 25.89. HRMS (ESI) m/z: calcd for $\mathbf{C}_{\mathbf{1 8}} \mathbf{H}_{\mathbf{1 7}} \mathbf{O C l}$ M284.0968, found 284.0962; calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}^{37} \mathrm{Cl}$ M286.0938, found 286.0930.

Colorless oil, $\mathbf{8 2 \%}$ yield; $[a]^{20}{ }_{\mathrm{D}}=-82.8\left(\mathrm{c}=5.5, \mathbf{C H C l}_{3}\right)$; ee was determined to be 99% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol $=98 / 2,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}) ; \operatorname{tr}($ major $)=5.066 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.17$ $(\mathrm{m}, 4 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.81(\mathrm{~m}$, $1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 4.25-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.05-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.73(\mathrm{~m}$, $1 \mathrm{H}), 2.56(\mathrm{dd}, J=14.4,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.11-1.91$ (m, 2H). ${ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.65,147.67,141.92,134.89,130.50,129.13,128.45,127.35$, 127.16, 126.23, 125.70, 120.25, 116.81 (d), 63.04, 45.22, 31.26, 25.94, 20.16. HRMS (ESI) m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}$ M264.1514, found 264.1513.

(R)-4-(2-(m-tolyl)allyl)chromane (3an)

Colorless oil, 82\% yield; $[a]^{20}{ }_{\mathrm{D}}=-9.8\left(\mathrm{c}=5, \mathbf{C H C l}_{3}\right)$; ee was determined to be $>99 \%$ by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol $=98 / 2,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}$); tr (major) $=5.517 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.24$ $(\mathrm{m}, 3 \mathrm{H}), 7.17(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{q}, J=10.2,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.79 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.21-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.21-3.05(\mathrm{~m}$, $1 \mathrm{H}), 2.92-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.74(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.57,146.44,140.60,138.15,129.06,128.53,128.49$, $127.44,127.15,126.31,123.44,120.22,116.87,114.90,63.23,42.82,31.43,25.94$, 21.65. HRMS (ESI) m/z: calcd for $\mathrm{C}_{\mathbf{1 9}} \mathrm{H}_{\mathbf{2 0}} \mathbf{O}$ M264.1514, found 264.1508.

(R)-4-(2-(3,4-dimethoxyphenyl)allyl)chromane (3ao)

Colorless oil, $\mathbf{5 0 \%}$ yield; $[a]^{20}{ }_{\mathrm{D}}=-49.7\left(\mathrm{c}=5.2, \mathbf{C H C l}_{\mathbf{3}}\right)$; ee was determined to be 98% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol $=98 / 2,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}) ; \operatorname{tr}($ major $)=12.089 \mathrm{~min} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24-8.14$ $(\mathrm{m}, 3 \mathrm{H}), 7.86-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{ddd}, J=8.1,7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.03(\mathrm{ddd}, J=8.1,7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.57(\mathrm{~m}$, $1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 0.84-0.75(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $184.68,182.10,164.45,143.87$ (d), $141.39,134.62,134.18$ (d), 132.06 (d), 128.13, $127.23,126.55,121.98,119.96,118.72,110.22,102.76,52.27,37.22$ (d), 27.41 (d),
9.21. HRMS (ESI) m / z : calcd for $\mathbf{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{2 2}} \mathrm{O}_{\mathbf{3}}$ M310.1569, found 310.1565.

(R)-4-(2-(3,5-dimethoxyphenyl)allyl)chromane (3ap)

Colorless oil, 85\% yield; $[a]^{20}{ }_{D}=-39.9\left(\mathrm{c}=5.4, \mathbf{C H C l}_{3}\right)$; ee was determined to be 92% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol $=98 / 2,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}) ; \operatorname{tr}($ major $)=4.317 \mathrm{~min} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19-7.15$ $(\mathrm{m}, 1 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{td}, J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=$ 8.1, 1.3 Hz, 1H), $5.33(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.21-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{ddd}$, $J=14.4,4.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dq}, J=10.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=14.3,10.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 1.95-1.73(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 154.59,146.52$, $140.64,138.01,129.44,129.04,127.42,126.39,124.25,120.21,116.87,114.68,63.28$, 42.83 , $31.43,25.96,21.52$. HRMS (ESI) \mathbf{m} / \mathbf{z} : calcd for $\mathbf{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{2 2}} \mathbf{O}_{\mathbf{3}} \mathbf{M 3 1 0 . 1 5 6 9}$, found 310.1566.
(R)-4-(2-(3,5-dimethylphenyl)allyl)chromane (3aq)

Colorless oil, $\mathbf{8 5 \%}$ yield; $[a]^{20}{ }_{\mathrm{D}}=-59.2\left(\mathrm{c}=5.4, \mathbf{C H C l}_{3}\right)$; ee was determined to be 98% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol $=98 / 2,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}) ; \operatorname{tr}$ (major) $=4.411 \mathrm{~min} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.15-7.07$ $(\mathrm{m}, 4 \mathrm{H}), 7.05(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.28(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.23-4.18(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.77$ $(\mathrm{m}, 1 \mathrm{H}), 2.61-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.92$ (m, 1H). ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 154.64,147.55,138.94,136.73,134.74$, $131.32,129.15,128.39,127.31,126.36(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 120.23,116.75,63.06,45.34$, $31.28,25.94,21.08,20.15$. HRMS (ESI) \mathbf{m} / \mathbf{z} : calcd for $\mathbf{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{2 2}} \mathbf{O} \mathbf{M} \mathbf{~} 278.1671$, found 278.1665.

(R)-4-(2-mesitylallyl)chromane (3ar)

Colorless oil, 46\% yield; $[a]^{20}{ }_{\mathrm{D}}=-121.9\left(\mathrm{c}=5, \mathbf{C H C l}_{3}\right)$; ee was determined to be 53% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol $=98 / 2,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}) ; \operatorname{tr}($ major $)=3.989 \mathrm{~min} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.14-7.04$ $(\mathrm{m}, 2 \mathrm{H}), 6.92(\mathrm{~s}, 2 \mathrm{H}), 6.89-6.81(\mathrm{~m}, 2 \mathrm{H}), 5.40(\mathrm{q}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.32-4.14(\mathrm{~m}, 2 \mathrm{H}), 3.04-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.48(\mathrm{~m}, 1 \mathrm{H})$, 2.36-2.26(m, 9H), 2.24-2.15(m, 1H), 2.12-2.07(m, 1H). ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 154.70,146.54,139.40,136.13,134.98,134.77,129.41,128.47,128.39$, $127.34,126.40,120.35,116.79,115.45,63.05,44.82,31.05,26.45,20.96,20.18,19.92$.

HRMS (ESI) m/z: calcd for $\mathrm{C}_{21} \mathbf{H}_{24} \mathrm{O}$ M292.1827, found 292.1821.

(R)-4-(2-(naphthalen-2-yl)allyl)chromane (3as)

Colorless oil, $\mathbf{5 0 \%}$ yield; $[a]^{20}{ }_{\mathrm{D}}=-36.4\left(\mathrm{c}=5, \mathbf{C H C l}_{3}\right)$; ee was determined to be 96% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol $=98 / 2,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm})$; tr (major) $=6.226 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.84(\mathrm{~m}, 3 \mathrm{H}), 7.66(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.46(\mathrm{~m}, 2 \mathrm{H})$, 7.26-7.21 (m, 1H), 7.16-7.07(m, 1H), 6.94-6.87(m, 1H), $6.83(\mathrm{dd}, J=8.2,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.54(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 4.26-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.33$ (ddd, $J=14.2$, $4.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.80(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.54,146.17,137.88,133.45,132.95,129.00,128.18$ (d), $127.63,127.46,126.35,126.19,126.06,125.07,124.67,120.21,116.87,115.60,63.22$, 42.73, 31.56, 25.99. HRMS (ESI) \mathbf{m} / \mathbf{z} : calcd for $\mathbf{C}_{22} \mathbf{H}_{\mathbf{2 0}} \mathbf{O} \mathbf{~ M 3 0 0 . 1 5 1 4}$, found 300.1509.
(3S,4R)-3-methyl-4-(2-phenylallyl)chromane (3at)

Colorless oil, $\mathbf{4 2 \%}$ yield, $>\mathbf{2 5}: 1 \mathbf{d r}$; $[a]^{20}{ }_{\mathrm{D}}=+1.7\left(\mathrm{c}=5, \mathbf{C H C l}_{3}\right)$; ee was determined to be 99% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol = 98/2, $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}) ; \operatorname{tr}($ major $)=7.192 \mathrm{~min} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-$ $7.46(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.79$ (m, 2H), $5.36(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=11.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.94$ (ddd, $J=11.0,2.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=14.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=14.6,10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=10.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 153.73,146.50,140.86,130.56,128.55,127.65,127.29,126.38,124.97$, 120.34, 116.51, 114.90, 66.78, 44.62, 38.57, 29.00, 17.34. HRMS (ESI) m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}$ M264.1514, found 264.1506.
(4R)-4-(2-phenylallyl)-2-(o-tolyl)chromane (3au)

Colorless oil, $\mathbf{4 0 \%}$ yield, 2.8:1 dr; $[a]^{20}{ }_{\mathrm{D}}=-103.6\left(\mathrm{c}=6, \mathbf{C H C l}_{3}\right)$; ee was determined to be $98 \% / 96 \%$ by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol $=99 / 1,0.8 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}) ; \operatorname{tr}$ (major) $=19.091$ and $23.480 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 87.51-7.48(\mathrm{~m}, 12 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 8 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.24-7.15(\mathrm{~m}$, $13 \mathrm{H}), 7.01-6.92(\mathrm{~m}, 8 \mathrm{H}), 5.40-5.31(\mathrm{~m}, 7 \mathrm{H}), 5.18-5.01(\mathrm{~m}, 5 \mathrm{H}), 3.60-3.14(\mathrm{~m}, 4 \mathrm{H})$, 3.16-3.14 (m, 4H), 2.89-2.82(m, 3H), 2.41 (s, 9H), 2.25 (s, 3H), 2.17-2.09 (m, 4H), $1.91-1.68(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.48,154.95,146.48,146.37$, $140.53,140.43,139.78,139.54,134.83,134.43,130.46,130.42,129.60,128.63$, 128.54, 127.78, 127.73, 127.64, 127.57, 127.47, 127.02, 126.46, 126.37, 126.28, $125.97,125.92,125.72,125.56,120.62,120.36,117.25,117.11,115.50,115.11,74.82$, 70.21, 44.10, 41.58, 35.16, 32.96, 32.37, 31.59, 19.17, 18.95. HRMS (ESI) m/z: calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}$ M340.1827, found 340.1823.
(R)-4-(2-cyclohexylallyl)chromane (3av)

Colorless oil, $\mathbf{8 5 \%}$ yield; $[a]^{20}{ }_{\mathrm{D}}=+143.0\left(\mathrm{c}=5, \mathbf{C H C l}_{\mathbf{3}}\right)$; ee was determined to be 98% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol $=98 / 2,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}$); tr (major) $=4.277 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21-7.17$ $(\mathrm{m}, 1 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.86-6.82(\mathrm{~m}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H})$, $4.79(\mathrm{~s}, 1 \mathrm{H}), 4.23-4.14(\mathrm{~m}, 2 \mathrm{H}), 3.05-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=14.7,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.26-2.17 (m, 1H), 2.08-1.98(m, 1H), 1.98-1.91 (m, 2H), 1.89-1.77 (m, 4H), 1.77 $-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.24(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.57,152.45$, $129.16,127.32,126.56,120.14,116.81,109.63,63.22,43.52,42.60,32.95,32.21$,
31.40, 26.97, 26.76, 26.42, 25.97. HRMS (ESI) m/z: calcd for $\mathbf{C}_{18} \mathbf{H}_{24} \mathbf{O}$ M256.1827, found 256.1819.
(R)-6-methoxy-4-(2-phenylallyl)thiochromane (3aw)

Colorless oil, $\mathbf{5 7 \%}$ yield; $[a]^{20}{ }_{\mathrm{D}}=+61.7\left(\mathrm{c}=5.1, \mathbf{C H C l}_{3}\right)$; ee was determined to be 91% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol $=98 / 2,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}$); $\operatorname{tr}($ major $)=7.819 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.45$ (m, 2H), 7.43-7.36(m, 2H), 7.36-7.29(m, 1H), 7.05-7.02(m, 1H), 6.72-6.69(m, $1 \mathrm{H}), 6.62-6.61(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~m}, 3 \mathrm{H}), 3.21-3.15(\mathrm{~m}, 1 \mathrm{H})$, 3.01-2.96(m, 1H), 2.92-2.82(m, 2H), 2.76-2.70(m, 1H), 2.21-2.06(m, 1H), 1.90 $-1.82(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8156.52,146.21,140.56,138.57,128.58$, 127.70. 127.43, 126.38, 123.13, 112.71, 55.38, 40.79, 35.91, 25.32, 22.61. HRMS (ESI) m / z : calcd for $\mathrm{C}_{\mathbf{1 9}} \mathrm{H}_{\mathbf{2 0}} \mathrm{SO}$ M296.1235, found 296.1229.

(R)-6-methyl-4-(2-phenylallyl)thiochromane (3ax)

Colorless oil, $\mathbf{6 1 \%}$ yield; $[a]^{20}{ }_{\mathrm{D}}=+52.2\left(\mathrm{c}=5.3, \mathbf{C H C l}_{3}\right)$. ee was determined to be 94\% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol $=99 / 1,0.5$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}) ; \operatorname{tr}($ major $)=9.127 \mathrm{~min} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~s}, 2 \mathrm{H})$, $7.44(\mathrm{~s}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~m}, 1 \mathrm{H}), 5.36$ $(\mathrm{m}, 1 \mathrm{H}), 5.11-5.05(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 1 \mathrm{H}), 2.99(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{~m}, 2 \mathrm{H}), 2.77-2.67(\mathrm{~m}$, 1H), $2.29(\mathrm{~m}, 3 \mathrm{H}), 2.16-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 146.27,140.63,137.02,133.34,130.54,128.57,127.68,127.55,126.42$, 115.15, 40.92, 35.4, 24.89, 22.43, 20.92. HRMS (ESI) m/z: calcd for $\mathbf{C}_{19} \mathbf{H}_{20} \mathbf{S}$ $[\mathrm{M}+\mathrm{H}]^{+} \mathbf{2 8 1 . 1 3 6 4}$, found 281.1357.
(R)-6-fluoro-4-(2-phenylally)thiochromane (3ay)

Colorless oil, $\mathbf{8 0 \%}$ yield; $[a]^{20}{ }_{\mathrm{D}}=+11.2\left(\mathrm{c}=5.1, \mathbf{C H C l}_{3}\right)$; ee was determined to be 85% by HPLC analysis with a Chiralcel OJ-3 column (hexane/2-propanol $=99 / 1,0.5$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}) ; \operatorname{tr}($ major $)=24.720 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $87.51-7.49$ $(\mathrm{m}, 2 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.86-6.82(\mathrm{~m}$, $1 \mathrm{H}), 6.80-6.78(\mathrm{~m}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 3.24-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.96(\mathrm{~m}$, $1 \mathrm{H}), 2.94-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.84(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 145.87,140.36,128.66,127.81,127.70(\mathrm{~d}, J=7.6 \mathrm{~Hz}$), 126.37, 116.46, 116.29, 115.46, 114.08, 113.91, 40.74, 35.76, 24.92, 22.54. ${ }^{19}$ F NMR (376 MHz, CDCl_{3}): $\delta-119.51$. HRMS (ESI) m/z: calcd for $\mathbf{C}_{18} \mathbf{H}_{17} \mathbf{S F} \mathbf{~ M 2 8 4 . 1 0 3 5}$, found 284.1030.
(R)-6-chloro-4-(2-phenylallyl)thiochromane (3az)

Colorless oil, $\mathbf{6 6 \%}$ yield; $[a]^{20}{ }_{\mathrm{D}}=+75.3\left(\mathrm{c}=5.8, \mathbf{C H C l}_{3}\right)$; ee was determined to be 84% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol $=99 / 1,0.5$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}$); tr (major) $=10.670 \mathrm{~min} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 87.48-7.47$ $(\mathrm{m}, 2 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 2 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{~s}$, $1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 3.24-3.17(\mathrm{~m}, 2 \mathrm{H}), 2.96-2.83(\mathrm{~m}, 3 \mathrm{H}), 2.72-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.14-$ $2.08(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.78(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.81,140.35$, $138.68,129.58,129.05,128.66,127.81,127.68,126.71,126.38,115.49,40.69,35.5$, 24.59, 22.44. HRMS (ESI) m/z: calcd for $\mathbf{C}_{\mathbf{1 9}} \mathbf{H}_{\mathbf{2 0}} \mathbf{S C l}$ M300.0739, found 300.0731; calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~S}^{\mathbf{3 7}} \mathrm{Cl}$ M302.0710, found 302.0699.
(R)-6-bromo-4-(2-phenylallyl)thiochromane (3ba):

Colorless oil, $\mathbf{8 2 \%}$ yield; $[a]^{20}{ }_{\mathrm{D}}=+27.0\left(\mathrm{c}=5.2, \mathbf{C H C l}_{3}\right)$; ee was determined to be 85% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol $=98 / 2,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}) ; \operatorname{tr}($ major $)=5.416 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.46$ (m, 2H), 7.43-7.39 (m, 2H), 7.36-7.32 (m, 1H), 7.19-7.16(m, 1H), 7.13-7.12 (d, J $=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.32(\mathrm{~m}$, $1 \mathrm{H}), 3.23-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.83(\mathrm{~m}, 3 \mathrm{H}), 2.71-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.08(\mathrm{~m}, 1 \mathrm{H})$, $1.85-1.77(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.80,140.34,139.03,131.56$, $129.53,128.66,127.98,127.80,126.38,116.76,115.51,40.68,35.44,24.52,22.39$. HRMS (ESI) m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{SBr}$ M344.0234, found 344.0232; calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~S}^{81} \mathrm{Br}$ M346.0214, found 346.0211.

Colorless oil, 35\% yield; $[a]^{20}{ }_{\mathrm{D}}=+49.2\left(\mathrm{c}=5.3, \mathbf{C H C l}_{3}\right)$; ee was determined to be 81% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol $=98 / 2,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}) ; \operatorname{tr}($ major $)=6.947 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.42$ $(\mathrm{m}, 2 \mathrm{H}), 7.12-6.99(\mathrm{~m}, 4 \mathrm{H}), 6.95-6.93(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}$, $3 H), 3.27-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.87(\mathrm{~m}, 3 \mathrm{H}), 2.86-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.10(\mathrm{~m}, 1 \mathrm{H})$, $1.89-1.80(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.24,145.38,137.2,132.89$, 132.24, 129.91, 127.49, 126.57, 126.51, 123.78, 113.91, 55.33, 41.04, 35.40, 24.71, 22.44. HRMS (ESI) m/z: calcd for $\mathbf{C}_{19} \mathbf{H}_{20} \mathbf{O S}[\mathbf{M}+\mathbf{H}]^{+} \mathbf{2 9 7 . 1 3 1 3}$, found 297.1304.

(R)-4-(2-(4-chlorophenyl)allyl)thiochromane (3bc)

Colorless oil, $\mathbf{5 0 \%}$ yield; $[a]^{20}{ }_{D}=-20.6\left(c=4, \mathbf{C H C l}_{3}\right)$; ee was determined to be 89% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol $=98 / 2,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}) ; \operatorname{tr}($ major $)=7.556 \mathrm{~min} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.35$ $(\mathrm{m}, 4 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.96(\mathrm{~m}, 2 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 3.24-3.17$ $(\mathrm{m}, 1 \mathrm{H}), 2.92-2.85(\mathrm{~m}, 3 \mathrm{H}), 2.72-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.81(\mathrm{~m}$, 1H). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.05,139.00,136.83,133.47,132.24,129.83$, $128.73,127.68,126.68,126.58,123.82,115.72,40.76,35.49,24.82,22.41$. HRMS (ESI) m / z : calcd for $\mathrm{C}_{\mathbf{1 8}} \mathrm{H}_{\mathbf{1 7}} \mathrm{SCl} \mathrm{M} 300.0739$, found 300.0731 ; calcd for $\mathrm{C}_{\mathbf{1 8}} \mathrm{H}_{\mathbf{1 7}} \mathrm{S}^{\mathbf{3 7}} \mathrm{Cl}$ M302.0710, found 302.0703.
(R)-4-(2-(o-tolyl)allyl)thiochromane (3bd)

Colorless oil, 65\% yield; $[a]^{20}{ }_{\mathrm{D}}=-119.6\left(\mathrm{c}=5, \mathbf{C H C l}_{3}\right)$; ee was determined to be 96% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol $=98 / 2,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}) ; \operatorname{tr}($ major $)=4.922 \mathrm{~min} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.24$ $(\mathrm{m}, 4 \mathrm{H}), 7.16-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.03-6.98(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H})$, $5.10(\mathrm{~s}, 1 \mathrm{H}), 3.28-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.82(\mathrm{~m}, 3 \mathrm{H}), 2.73-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H})$, 2.30-2.25(m, 1H), 2.01-1.93(m, 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 147.44,141.83$, $137.50,134.95,132.49,130.61,129.82,128.56,127.21,126.59,125.74,123.97$, $117.00,43.12,35.53,24.92,22.63,20.30$. HRMS (ESI) \mathbf{m} / \mathbf{z} : calcd for $\mathbf{C}_{\mathbf{1 9}} \mathbf{H}_{\mathbf{2 0}} \mathbf{S}$ M280.1286, found 280.1278.

(R)-triisopropyl((4-(2-phenylallyl)chroman-6-yl)ethynyl)silane (3be)

Colorless oil, $\mathbf{4 0 \%}$ yield; $[a]^{20}{ }_{\mathrm{D}}=-76.8\left(\mathrm{c}=5.2, \mathbf{C H C l}_{3}\right)$. ee was determined to be 99% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol $=99 / 1,0.2$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}) ; \operatorname{tr}($ major $)=18.134 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.46$ (m, 2H), $7.41-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (dd, J $=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 4.24-4.04(\mathrm{~m}$, $2 \mathrm{H}), 3.16$ (ddd, $J=14.4,4.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.50(\mathrm{~m}, 1 \mathrm{H})$, 1.96-1.72(m, 2H), $1.14(\mathrm{~s}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 154.77, 146.07, $140.44,132.90$, 131.51, 128.61, 127.78, 126.36, 126.02, 116.87, 115.29, 115.07, 107.49, 88.21, 63.41, 42.42, 31.18, 25.76, 18.75, 11.41. HRMS (ESI) m/z: calcd for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+} \mathbf{4 3 1 . 2 7 7 0}$, found 431.2761.
(R)-4-(2-phenylallyl)-N-(p-tolyl)chroman-6-amine (3bf)

Colorless oil, 40\% yield; $[a]^{20}{ }_{\mathrm{D}}=7.6\left(\mathrm{c}=5.1, \mathbf{C H C l}_{3}\right)$. ee was determined to be 98% by HPLC analysis with a Chiralcel OD-H column (hexane/2-propanol $=95 / 5,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}) ; \operatorname{tr}($ major $)=17.573 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.40$ $(\mathrm{m}, 2 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.88(\mathrm{~m}$, $1 \mathrm{H}), 6.86-6.80(\mathrm{~m}, 3 \mathrm{H}), 6.75-6.71(\mathrm{~m}, 1 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.18-4.05(\mathrm{~m}$, 2H), 3.13 (ddd, $J=14.3,4.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.51(\mathrm{~m}, 1 \mathrm{H})$, $2.28(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $149.78,146.20,142.66,140.45,135.81,129.80,129.05,128.53,127.67,126.75$, $126.28,120.71,120.11,117.34,116.25,115.08,63.18,42.76,31.52,26.10,20.56$.

HRMS (ESI) m/z: calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+} \mathbf{3 5 6} \mathbf{2 0 1 4}$, found $\mathbf{3 5 6 . 2 0 0 4}$.

5. Crystal data and structure refinement of compound 3ao

Table S1 Crystal data and structure refinement for compound 3ao.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha{ }^{\circ}$
$\beta /{ }^{\circ}$ 0
$\gamma^{\circ} \quad 90$
Volume/ \AA^{3}
1651.97(12)

Z
4
$\rho_{\text {calc }} / \mathrm{cm}^{3}$ 1.248
μ / mm^{-1} 0.660

F(000) 664.0

Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
$-7 \leq \mathrm{h} \leq 7,-10 \leq \mathrm{k} \leq 12,-30 \leq 1 \leq 30$
Reflections collected 19161
Independent reflections
$3041\left[\mathrm{R}_{\text {int }}=0.0370, \mathrm{R}_{\text {sigma }}=0.0217\right]$
Data/restraints/parameters
3041/0/211
Goodness-of-fit on F^{2} 1.034

Final R indexes [$\mathrm{I}>=2 \sigma(\mathrm{I})]$
$\mathrm{R}_{1}=0.0252, \mathrm{wR}_{2}=0.0639$
Final R indexes [all data]
$\mathrm{R}_{1}=0.0261, \mathrm{wR}_{2}=0.0645$
Largest diff. peak/hole / e \AA^{-3}
Flack parameter

Table S2 Fractional Atomic Coordinates ($\times 1 \mathbf{0}^{4}$) and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound 3ao. $U_{e q}$ is defined as $\mathbf{1 / 3}$ of the trace of the orthogonalised \mathbf{U}_{IJ} tensor.

\boldsymbol{y}				
Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U (e q)}$
O1	$-7735.9(18)$	$-5095.8(12)$	$-4714.8(4)$	$24.8(3)$
O2	$-4537.1(18)$	$-3596.8(11)$	$-4555.0(4)$	$22.6(3)$
O3	$-8212.8(18)$	$-3287.8(11)$	$-981.5(4)$	$21.9(3)$
C1	$-9477(3)$	$-5936.4(19)$	$-4821.5(7)$	$30.9(4)$
C2	$-7077(2)$	$-5033.1(16)$	$-4209.2(5)$	$18.4(3)$
C3	$-5314(2)$	$-4222.3(15)$	$-4122.6(6)$	$17.5(3)$
C4	$-4530(2)$	$-4083.0(14)$	$-3625.7(6)$	$17.2(3)$
C5	$-5452(2)$	$-4725.8(14)$	$-3194.0(5)$	$15.7(3)$
C6	$-4565(2)$	$-4549.1(14)$	$-2661.5(5)$	$16.3(3)$
C7	$-5761(2)$	$-5080.5(15)$	$-2198.7(5)$	$16.4(3)$
C8	$-7698(2)$	$-4232.1(14)$	$-2064.8(6)$	$16.5(3)$
C9	$-9008(2)$	$-4928.4(15)$	$-1656.8(6)$	$16.0(3)$
C10	$-9215(2)$	$-4421.7(15)$	$-1151.1(6)$	$17.6(3)$
C11	$-10515(3)$	$-5041.7(17)$	$-788.5(6)$	$21.8(3)$
C12	$-11603(3)$	$-6180.3(17)$	$-928.3(6)$	$24.0(3)$
C13	$-2841(3)$	$-2693.4(17)$	$-4472.1(6)$	$26.7(4)$
C14	$-7142(3)$	$-2819.3(15)$	$-1875.3(6)$	$21.1(3)$
C15	$-6523(3)$	$-2853.0(16)$	$-1304.6(6)$	$22.6(3)$
C16	$-10121(2)$	$-6087.9(15)$	$-1783.0(6)$	$19.2(3)$
C17	$-11399(3)$	$-6716.9(17)$	$-1427.5(6)$	$22.9(3)$
C18	$-2771(3)$	$-3928.7(16)$	$-2579.4(6)$	$20.9(3)$
C19	$-7185(2)$	$-5511.1(14)$	$-3287.5(6)$	$18.0(3)$
C20	$-7993(3)$	$-5668.7(15)$	$-3790.7(6)$	$19.8(3)$

Table S3 Anisotropic Displacement Parameters ($\AA^{\mathbf{2} \times 10^{3}}$) for compound 3ao. The Anisotropic displacement factor exponent takes the form: -
$2 \pi^{2}\left[h^{2} a^{* 2} \mathbf{U}_{11}+2 h k a^{*} b^{*} \mathbf{U}_{12}+\ldots\right]$.

Atom	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
O1	$27.8(6)$	$30.0(6)$	$16.7(5)$	$1.5(4)$	$-3.8(4)$	$-8.6(5)$
O2	$26.4(6)$	$25.2(6)$	$16.2(5)$	$3.9(4)$	$0.8(4)$	$-8.3(5)$
O3	$26.3(6)$	$20.4(5)$	$18.9(5)$	$-3.0(4)$	$3.8(4)$	$-5.4(5)$
C1	$30.8(9)$	$39.9(10)$	$21.8(8)$	$-2.8(7)$	$-5.0(7)$	$-12.7(8)$
C2	$20.0(7)$	$18.6(7)$	$16.5(7)$	$-0.6(5)$	$-1.7(6)$	$1.7(6)$
C3	$20.0(7)$	$15.7(7)$	$16.7(7)$	$2.7(5)$	$3.1(6)$	$1.2(6)$
C4	$16.7(7)$	$14.4(7)$	$20.4(7)$	$0.4(6)$	$0.6(6)$	$0.3(6)$

C5	$16.1(7)$	$13.5(6)$	$17.5(7)$	$0.7(5)$	$0.8(5)$	$3.4(6)$
C6	$17.9(7)$	$13.0(7)$	$18.0(7)$	$1.8(5)$	$0.5(6)$	$3.7(6)$
C7	$17.8(7)$	$15.7(7)$	$15.8(7)$	$1.4(5)$	$-0.4(5)$	$1.3(6)$
C8	$17.1(7)$	$16.1(7)$	$16.2(7)$	$2.1(5)$	$0.0(6)$	$0.9(6)$
C9	$14.6(7)$	$16.2(7)$	$17.4(7)$	$3.1(6)$	$-0.1(5)$	$2.4(6)$
C10	$17.5(7)$	$15.3(7)$	$20.0(7)$	$0.9(6)$	$-0.6(6)$	$0.6(6)$
C11	$22.9(7)$	$24.3(8)$	$18.3(7)$	$2.5(6)$	$2.5(6)$	$1.2(7)$
C12	$21.2(8)$	$25.6(8)$	$25.2(8)$	$8.4(6)$	$4.3(7)$	$-2.6(7)$
C13	$30.6(9)$	$29.2(8)$	$20.1(8)$	$3.2(6)$	$2.6(7)$	$-12.6(7)$
C14	$24.6(8)$	$15.8(7)$	$22.8(8)$	$2.0(6)$	$5.1(6)$	$0.2(6)$
C15	$23.7(8)$	$19.1(8)$	$25.0(8)$	$-3.8(6)$	$4.0(6)$	$-5.3(7)$
C16	$19.3(7)$	$19.2(7)$	$19.1(7)$	$0.2(6)$	$-1.2(6)$	$0.7(6)$
C17	$20.6(7)$	$20.8(8)$	$27.4(8)$	$4.1(6)$	$-2.3(6)$	$-4.2(6)$
C18	$18.3(7)$	$25.7(8)$	$18.8(7)$	$4.0(6)$	$-1.7(6)$	$-0.1(6)$
C19	$18.6(7)$	$17.8(7)$	$17.6(7)$	$2.6(5)$	$2.4(6)$	$0.5(6)$
C20	$19.4(7)$	$17.9(7)$	$22.2(7)$	$-0.4(6)$	$-0.1(6)$	$-2.3(6)$

Table S4 Bond Lengths for compound 3ao.

Atom	Atom	Length $/ \boldsymbol{\AA}$		Atom	Atom	Length/ \AA
O1	C1	$1.430(2)$		C6	C18	$1.332(2)$
O1	C2	$1.3655(17)$		C7	C8	$1.550(2)$
O2	C3	$1.3672(18)$		C8	C 9	$1.514(2)$
O2	C13	$1.435(2)$		C8	C14	$1.532(2)$
O3	C10	$1.3731(19)$		C9	C10	$1.397(2)$
O3	C15	$1.4384(19)$		C9	C16	$1.399(2)$
C2	C3	$1.415(2)$		C10	C11	$1.397(2)$
C2	C20	$1.379(2)$		C11	C12	$1.382(2)$
C3	C4	$1.378(2)$		C12	C17	$1.393(2)$
C4	C5	$1.411(2)$		C14	C15	$1.517(2)$
C5	C6	$1.491(2)$		C16	C17	$1.381(2)$
C5	C19	$1.388(2)$		C19	C20	$1.401(2)$
C6	C7	$1.5118(19)$				

Table S5 Bond Angles for compound 3ao.

Atom	Atom	Atom	${\text { Angle } /{ }^{\circ}}$		Atom	Atom	Atom	Angle $/^{\circ}$
C 2	O 1	C 1	$117.00(12)$		C 9	C 8	C 7	$110.84(11)$
C 3	O 2	C 13	$116.55(12)$		C 9	C 8	C 14	$109.47(12)$
C 10	O 3	C 15	$115.12(12)$		C 14	C 8	C 7	$112.41(13)$
O 1	C 2	C 3	$115.24(13)$		C 10	C 9	C 8	$121.93(13)$
O 1	C 2	C 20	$125.66(14)$		C 10	C 9	C 16	$117.60(13)$

C20	C2	C3	$119.09(13)$		C16	C9	C8	$120.44(13)$
O2	C3	C2	$115.43(13)$		O3	C10	C9	$123.06(13)$
O2	C3	C4	$124.60(14)$		O3	C10	C11	$115.93(13)$
C4	C3	C2	$119.95(13)$		C11	C10	C9	$121.00(14)$
C3	C4	C5	$121.57(14)$		C12	C11	C10	$119.79(14)$
C4	C5	C6	$120.12(13)$		C11	C12	C17	$120.32(14)$
C19	C5	C4	$117.52(13)$		C15	C14	C8	$110.34(12)$
C19	C5	C6	$122.36(13)$		O3	C15	C14	$111.18(13)$
C5	C6	C7	$118.69(13)$		C17	C16	C9	$122.03(14)$
C18	C6	C5	$122.32(14)$		C16	C17	C12	$119.26(15)$
C18	C6	C7	$118.98(13)$		C5	C19	C20	$121.58(14)$
C6	C7	C8	$113.36(12)$		C2	C20	C19	$120.29(14)$

Table S6 Torsion Angles for compound 3ao.

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	Angle $^{\circ}$		\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	Angle $^{\circ}{ }^{\circ}$
O 1	C 2	C 3	O 2	$1.1(2)$		C 8	C 9	C 10	C 11	$176.70(14)$
O 1	C 2	C 3	C 4	$179.58(13)$		C 8	C 9	C 16	C 17	$-177.23(14)$
O 1	C 2	C 20	C 19	$-179.12(15)$		C 8	C 14	C 15	O 3	$-62.91(17)$
O 2	C 3	C 4	C 5	$177.93(13)$		C 9	C 8	C 14	C 15	$43.23(17)$
O 3	C 10	C 11	C 12	$179.27(14)$		C 9	C 10	C 11	C 12	$0.6(2)$
C 1	O 1	C 2	C 3	$178.20(14)$		C 9	C 16	C 17	C 12	$0.4(2)$
C 1	O 1	C 2	C 20	$-2.6(2)$		C 10	O 3	C 15	C 14	$47.98(18)$
C 2	C 3	C 4	C 5	$-0.4(2)$		C 10	C 9	C 16	C 17	$0.5(2)$
C 3	C 2	C 20	C 19	$0.0(2)$		C 10	C 11	C 12	C 17	$0.4(2)$
C 3	C 4	C 5	C 6	$-179.81(13)$		C 11	C 12	C 17	C 16	$-0.9(2)$
C 3	C 4	C 5	C 19	$0.1(2)$		C 13	O 2	C 3	C 2	$175.68(14)$

Table S7 Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{\mathbf{2} \times 10^{3}}\right)$ for compound 3ao.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U (e q)}$
H1A	-10672.52	-5619.65	-4621.61	46
H1B	-9154.99	-6862.27	-4720.93	46
H1C	-9796.46	-5903.37	-5195	46
H4	-3340.13	-3541.24	-3572.52	21
H7A	-4837.17	-5102.65	-1890.92	20
H7B	-6197.51	-6013.74	-2272.94	20
H8	-8545.5	-4140.78	-2389.12	20
H11	-10650.21	-4681.81	-446.93	26
H12	-12493.68	-6599.08	-682.68	29
H13A	-1638.44	-3198.51	-4347.78	40

H13B	-3230.76	-2020.59	-4211.04	40
H13C	-2496.28	-2243.92	-4800.89	40
H14A	-5984.95	-2461.38	-2086.3	25
H14B	-8344.57	-2216.3	-1921.04	25
H15A	-5339.62	-3471.91	-1258.86	27
H15B	-6076.84	-1945.66	-1194.31	27
H16	-9994.53	-6453.61	-2123.81	23
H17	-12130.88	-7506.84	-1522.31	28
H18A	-2008.62	-3580.33	-2865.72	25
H18B	-2253.5	-3834.62	-2234.42	25
H19	-7838.56	-5952.2	-3003.32	22
H20	-9176.87	-6215.78	-3844.03	24

Experimental

Single crystals of $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3}$ [compound 3aod were []. A suitable crystal was selected and [] on a Bruker CMOS area detector diffractometer. The crystal was kept at 100 K during data collection. Using Olex2 [1], the structure was solved with the SHELXT [2] structure solution program using Intrinsic Phasing and refined with the SHELXL
[3] refinement package using Least Squares minimisation.

Crystal structure determination of [compound 3aod

Crystal Data for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3}(M=310.37 \mathrm{~g} / \mathrm{mol})$: orthorhombic, space group
 $1651.97(12) \AA^{3}, Z=4, T=100 \mathrm{~K}, \mu(\mathrm{CuK} \alpha)=0.660 \mathrm{~mm}^{-1}$, Dcalc $=1.248 \mathrm{~g} / \mathrm{cm}^{3}$, 19161 reflections measured $\left(6.898^{\circ} \leq 2 \Theta \leq 137.206^{\circ}\right), 3041$ unique ($R_{\text {int }}=0.0370$, $\mathrm{R}_{\text {sigma }}=0.0217$) which were used in all calculations. The final R_{1} was $0.0252(\mathrm{I}>$ $2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.0645 (all data).
6. Copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and HPLC spectra of the products Compound 3aa

Compound 3ab

Compound 3ac

Compound 3ad

Compound 3ae

๗े

| 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Compound 3af

Compound 3ag

バ
$\stackrel{m}{\sim} \stackrel{\curvearrowleft}{\sim} \stackrel{n}{\sim}$

Compound 3ah

Compound 3ai

$z x-132 a-2$ ．2．fid

へ๊๙	
忒令	
1	1

Compound 3aj

Compound 3ak

 zx-136a. 2.fid

[^0]zx-136a-f. 1. fid

\qquad

Compound 3al

170	160	150	140	130	120	110	100	${ }^{90}$	80	70	60	50	40	30	20	10	0

Compound 3am

.

```
|\mp@code{##}
```

ํ..

Compound 3ao

Compound 3ap

Compound 3aq

Compound 3ar

Compound 3as

Compound 3at

170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10

Compound 3au

Compound 3av

Compound 3aw
(

Compound 3ax

Compound 3ay

Compound 3az

Compound 3ba

Compound 3bb

Compound 3be

Compound 3bd

Compound 3be

Compound 3bf

Compound 3aa

DAD1 B, Sig=254,4 Ref=off (D:IChemStationldatalcbhlcbhlcbh4-116-1.D)

Compound 3ab
DAD1 B, Sig=254,4 Ref=off (D:IChemStationldatalcbhlzxXZX-117B-RAC-2.D)

DAD1 B, Sig=254,4 Ref=off (D:IChemStationldatalcbhlzxIZX-117A.D)

Compound 3ac

Compound 3ad

DAD1 D, Sig=254,4 Ref=off (D:IChemStationldatalcbhlzx\ZX-106B-RAC.D)

DAD1 D, Sig=254,4 Ref=off (D:IChemStation\datalcbhlzxlzx-106a-0604-3.D)

Compound 3ae

DAD1 B, Sig=254,4 Ref=off (D:IChemStationldatalcbhlzx\ZX-109D-RAC-ODH.D)

DAD1 B, Sig=254,4 Ref=off (D:IChemStation\datalcbhlzx|ZX-109C.D)

Compound 3af

Compound 3ag

DAD1 B, Sig=254,4 Ref=off (D:IChemStation\datalcbhlzx|zx-106c-ic-rac.D)

Compound 3ah

DAD1 B, Sig=254,4 Ref=off (D:IChemStationldatalcbhlzx\zx-141A.D)

Compound 3ai

DAD1 B, Sig=254,4 Ref=off (D:IChemStationldatalcbhlzxlzx-re-132b-rac-3.D)

DAD1 B, Sig=254,4 Ref=off (D:IChemStationldatalcbhlizxizx-re-132a.D)

Compound 3aj
DAD1 B, Sig=254,4 Ref=off (D:IChemStationldatalcbhlzxlzx-137b-rac.D)

Compound 3ak

Compound 3al

DAD1 B, Sig=254,4 Ref=off (D:IChemStationldatalcbhlzx|ZX-116A-3.D)

Compound 3am

Compound 3an

DAD1 B, Sig=254,4 Ref=off (D:IChemStationldatalcbhlzxlzx-122b-rac.D)

DAD1 B, Sig=254,4 Ref=off (D:IChemStation\datalcbh\zx\zx-122A.D)

Compound 3ao
DAD1 B, Sig=254,4 Ref=off (D:IChemStation\datalcbhlzxIZX-153B-XIA-RAC.D)

Compound 3ap

DAD1 A, Sig=254,4 Ref=360,100 (D:Idata\CBHIzx\zx-156b-rac.D)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	4.093	BV E	0.0825	125.71877	23.46672	4.0441
2	4.317	VB R	0.0823	2982.98145	558.38873	95.9559

DAD1 A, Sig=254,4 Ref=360,100 (D:IdatalCBHIzxIzx-156A.D)

Compound 3aq

DAD1 B, Sig=254,4 Ref=off (D:IChemStationldatalcbhlzxlzx-167A-3.D)

Compound 3ar

Compound 3as

DAD1 B, Sig=254,4 Ref=off (D:IChemStation\datalcbhlzx\zx-145A.D)

Compound 3at

Compound 3au

Compound 3av

DAD1 B, Sig=210,4 Ref=360,100 (D:IdatalCBHIzxIzx-162B-RAC.D)

DAD1 B, Sig=210,4 Ref=360,100 (D:IdatalCBHIzxIzx-162A.D)

Compound 3aw

DAD1 B, Sig=254,4 Ref=off (D:IChemStationldatalcbhlzxIZX-200-CAT-ODH.D)

Compound 3ax

DAD1 B, Sig=254,4 Ref=off (D:IChemStationldatalcbhlzx\ZX-205-RAC-3.D)

DAD1 B, Sig=254,4 Ref=off (D:IChemStationldatalcbhlzx\ZX-205-CAT-4.D)

Compound 3ay

Compound 3az

DAD1 B, Sig=254,4 Ref=off (D:IChemStationldatalcbhlzxIZX-193A-RAC-3.D)

DAD1 B, Sig=254,4 Ref=off (D:IChemStationldatalcbhlzx|ZX-193B-CAT-2.D)

Compound 3ba

DAD1 B, Sig=254,4 Ref=off (D:IChemStationldatalcbhlzxIZX-199-RAC-ODH-

Compound 3bb

DAD1 B, Sig=254,4 Ref=off (D:IChemStation\datalcbhlzx\ZX-179D-RAC-ODH.D)

DAD1 B, Sig=254,4 Ref=off (D:IChemStationldatalcbhlzxlZX-179D-CAT-ODH.D)

Compound 3bc

DAD1 B, Sig=254,4 Ref=off (D:IChemStation\datalcbhlzxIZX-179A-CAT-ODH.D)

Compound 3bd

DAD1 B, Sig=254,4 Ref=off (D:IChemStation\datalcbhlzx\ZX-179B-CAT.D)

Compound 3be

DAD1 B, Sig=254,4 Ref=off (D:IChemStationldatalcbhlzx|zx-174-4-rac.D)

Compound 3bf

7. Study of time of LPS on RAW 264.7 cell

Figure S1. Different time and concentration of LPS on ELISA assay experiments. RAW 264.7 cells were plated in a 96 -well plate and treated with LPS. The culture supernatant was collected. The concentrations of IL-6 and TNF- α in the culture supernatant of RAW 264.7 cells were determined according to the manufacturer's instructions of the Duo-set ELISA kits, purchased from Jonln Co. Ltd. (Shanghai, China). The absorbance was measured at 450 nm . Data from three times independent experiments were expressed as means \pm SD. ${ }^{*} p<0.05$ compared with the control group.

References

1. M. V. Vita, P. Caramenti and J. Waser, Organic Letters, 2015, 17, 5832-5835.

[^0]:

