Electronic Supplementary Information

Exploring the Source of Ammonia Generation in Electrochemical Nitrogen

Reduction using Niobium Nitride

So Young Park,^{a c} So Eun Jang,^a Chang Woo Kim,^b Youn Jeong Jang,^{* c} Duck Hyun Youn ^{* a}

^aDepartment of Chemical Engineering, Department of Integrative Engineering for Hydrogen Safety, Kangwon National University, Chuncheon 24341, South Korea ^bDepartment of Nanotechnology Engineering, Pukyong National University, Busan 48513, South Korea ^cDepartment of Chemical Engineering, Hanyang University, Seoul 04763, South Korea

*Corresponding Author. Tel: +82-33-250-6338, Fax: +82-33-259-5549

Email address: yjang53@hanyang.ac.kr, youndh@kangwon.ac.kr

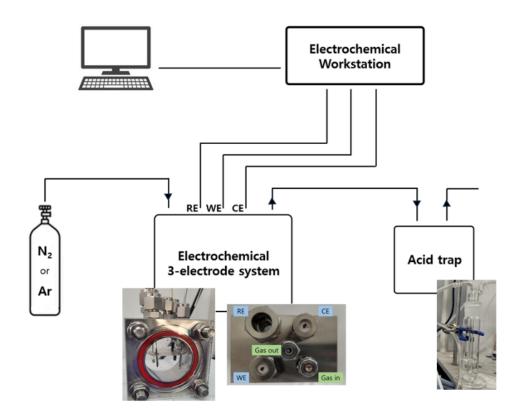
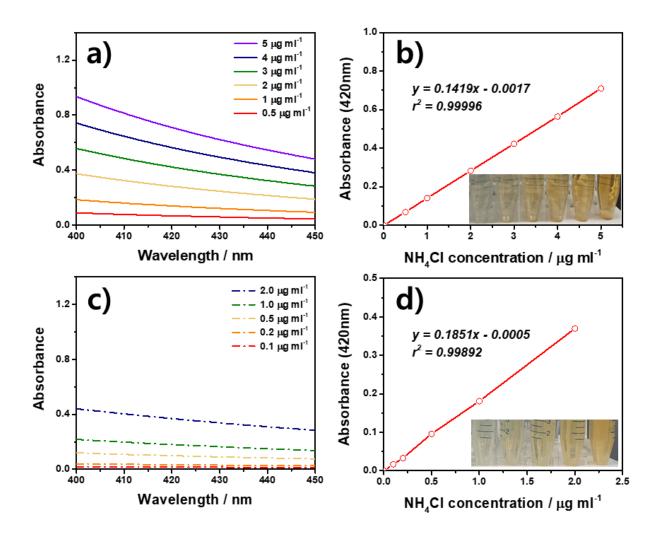
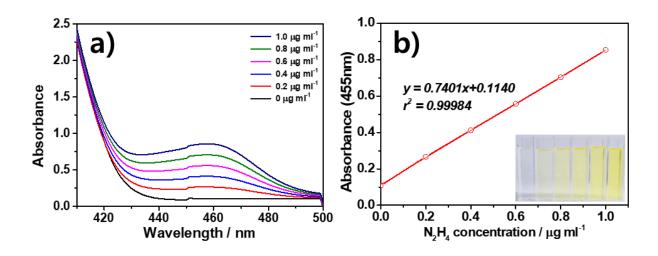




Fig. S1. Schematic illustration and photographs of the electrochemical measurement system.

Fig. S2. Ammonia detection method and calibration curves for Nessler's method a) in alkaline electrolyte, b) its calibration curve (y = 0.1419x - 0.0017, $r^2 = 0.99996$) and c) in acid trap, d) its calibration curve (y = 0.1851x - 0.0005, $r^2 = 0.99892$).

Fig. S3. Hydrazine detection method using a) Watt and Chrisp method and b) calibration curve (y = 0.7401x + 0.1140, $r^2 = 0.99984$) of Watt and Chrisp method.

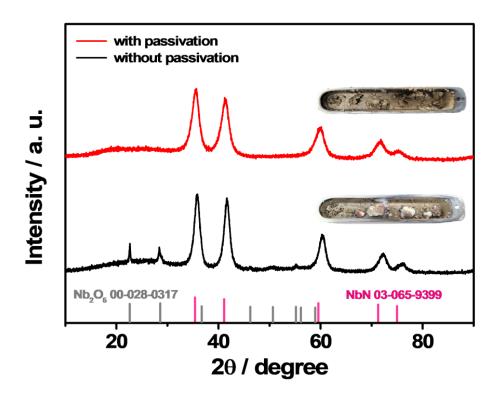


Fig. S4. XRD patterns of prepared catalysts with/without passivation.

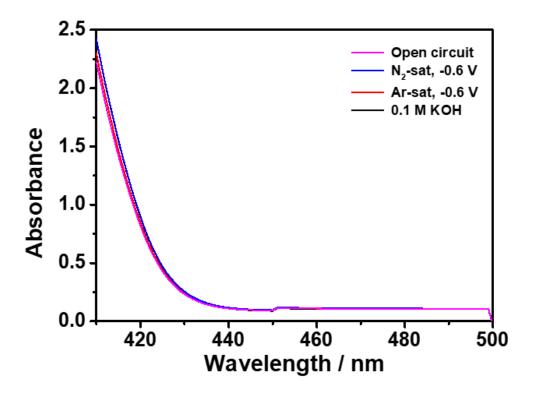


Fig. S5. Hydrazine detection in control experiments.

Catalyst	Electrolyte	Methods			Ref.
		¹⁵ N ₂ isotope & NMR	Detection of leached atoms	Acid trap	. Kti.
NbN	0.1 M KOH	о	ICP-OES (Nb) UV-vis (N)	о	This work
Mo ₂ N	0.1 M HCl	О			ACS Energy Lett. 2019, 4, 1053-1054
VN	0.05 M H ₂ SO ₄	о		о	ACS Sustain. Chem. Eng. 2019, 7, 6839-6850
CrN	0.05 M H ₂ SO ₄	О	ICP-MS (Cr) CHN-EA (N)	0	J. Mater. Chem. A 2021, 9, 8568-8575

 Table. S1. Employed characterization methods for leaching of TMN-based catalysts in NRR.

 Table. S2. The detected amount of Nb, N and Nb/N molar ratio at various potentials.

Potentials (vs RHE)	Nb (ICP-OES)	NH₃-N (UV-vis)	Molar Ratio (Nb : N)
-0.3V	2.79 µmol	2.90 µmol	0.96 : 1
-0.4V	3.26 µmol	2.73 µmol	1.19 : 1
-0.5V	3.29 µmol	2.79 µmol	1.18 : 1
-0.6V	3.84 µmol	3.82 µmol	1.00 : 1
ОСР	3.20 µmol	2.88 µmol	1.11 : 1