

Figure S2. TG/DTA curves of g-C₃N₄, 2 NZCN and 2 SZCN nanocomposite

Figure S3. N_2 adsorption-desorption isotherm of (a) g-C₃N₄ (b) 2 NZCN (c) 2 SZCN nanocomposite

Figure S4. N_2 adsorption-desorption isotherm of (a) N-doped ZnO (b) S-doped ZnO.

 Table S1 BET surface areas of as-prepared photocatalysts.

Photocatalyst	BET Surface Area (m ² g ⁻¹)		
g-C ₃ N ₄	66.5		
N-ZnO	47.2		
S-ZnO	33.3		
1 NZCN	111.2		
1 SZCN	108.0		
2 NZCN	89.1		
2 SZCN	84.2		
4 NZCN	76.5		
4 SZCN	68.0		
6 NZCN	66.5		
6 SZCN	63.1		

Electron Image 1

Figure S5. EDX elemental mapping of 2 NZCN nanocomposite.

Figure S6. EDX elemental mapping of 2 SZCN nanocomposite.

Figure S7. Consumption of H_2O_2 in photodegradation of (a) CV by 2 NZCN +photocatalyst (b) CV by 2 SZCN photocatalyst (c) BG by 2 NZCN photocatalyst, and (d) BG by 2 SZCN photocatalyst under various conditions (A) H_2O_2 , (B) H_2O_2 /Vis, (C) Cat/ H_2O_2 , (D) Cat/ H_2O_2 /Vis.

Figure S9. Kinetics of photodegradation of (a) BG by 2 NZCN nanocomposite and (b) BG by 2 SZCN nanocomposite over different H_2O_2 concentration (A) 0.005 M (B) 0.01 M (C) 0.15 M (D) 0.10 M. Inset: degradation rate constant k. (Reaction conditions: [Dye] = 100 mg/ L, Catalyst = 200 mg/L, T = 25 °C, pH = 6).

Figure S10. Influence of pH on photodegradation of (a) CV by 2 NZCN nanocomposite (b) CV by 2 SZCN nanocomposite (c) BG by 2 NZCN nanocomposite and (d) BG by 2SZCN nanocomposite (Reaction conditions: [Dye] = 100 mg/ L, Catalyst = 200mg/L, T = 25 °C).

Characterization of recovered catalyst:

Figure S11. FE-SEM image of recovered (a) 2 NZCN nanocomposites (b) 2 SZCN nanocomposite.

In order to investigate the chemical composition variation of the 2 NZCN and 2SZCN nanocomposite after the photodegradation reaction, XPS measurements were done on (ESCALAB Xi+, Thermo Fisher Scientific Pvt. Ltd., UK) which shows no noticeable change even after seventh catalytic cycle, indicating their high chemical stability in photodegradation process as depicted in Fig. S11 (a, b, c, d, e) and Fig. S12 (a, b, c, d, e, f) respectively. The XPS survey spectrum of 2NZCN nanocomposite shows the presence of C 1s, N 1s, O 1s and N 2p elements as depicted in Fig. S11 (a). Similarly, the XPS survey spectrum of 2SZCN nanocomposite indicates the presence of C 1s, N 1s, O 1s, N 2p and S 2p elements as depicted

Figure S12. (a) XPS survey spectra of recovered 2 NZCN nanocomposite, (b) C 1s XPSspectra,(c) N 1s XPS spectra, (d) O1s XPS spectra and (e) Zn 2p XPS spectra of recovered 2 NZCN

Figure S13. (a) XPS survey spectra of recovered 2 SZCN nanocomposite, (b) C 1s XPS spectra,(c) N 1s XPS spectra, (d) O1s XPS spectra, (e) Zn 2p XPS spectra and (f) S 2p XPS spectra of

recovered 2 NZCN nanocomposite.

Table S2. Comparison of different photocatalysts towards photocatalytic degradationCrystal

 violet and Brilliant green.

Photocatalytic degradation of Brilliant green dye molecule							
Photocatalyst	Conc.(ppm)	Time (min)	% Degradation	Light source	Reference		
N-ZnO-GO	20	90	100	Visible	[1]		
Ag ₈ SnS ₆	10	90	92.3	Tungsten	[2]		
Cu- and Ag- doped ZnO	10	180	100	UV	[3]		
(ZnO-TiO ₂) -β- CD	20	180	99	Visible	[4]		
Mn-CDSe QDS	10	90	86.5	Sunlight	[5]		
Sr-TiO ₂	25	60	96	UV	[6]		
Fe ₃ O ₄ /CdS–ZnS	10	60		Visible	[7]		
CeO ₂ /Zeolite- NaX	10	180	94.8	Visible	[8]		
ZnO	20.7 µM	60	94.3	MW/UV	[9]		
ZnS quantum dots	10	80	88	Solar	[10]		
N-doped	100	30	99.3	Visible	This work		
ZnO@g-C ₃ N ₄	100	30	92.3				
S-doped							
$ZnO@g-C_3N_4$							
Photocatalytic degradation of Crystal violet dye molecule							
Photocatalyst	Conc.(ppm)	Time (min)	% Degradation	Light source	Reference		
Bi ₂ WO ₆	50	4320	99.8	UV	[<u>[11]</u>		
BiO _x Cl _v /BiO _m I _n	10	720	99.5	Visible	[12]		
Cu doped ZnO	10	210	100	UV- Visible	[13]		
Ag ⁺ doped TiO ₂	20	600	88	Solar	[14]		
ZnO	10	80	96	UV	[15]		
N-doped	100	45	96.2	Visible	This work		
ZnO@g-C ₃ N ₄ S-doped ZnO@g-C ₃ N ₄	100	45	90.4				

References

1. C.N. Peter, W.W Anku, R. Sharma, G.M. Joshi, S.K. Shukla and P.P. Govender, Ionics.,

2019, 25, 327-339.

2. B.H. Shambharkar and A.P. Chowdhury, RSC Adv, 2016, 6, 10513–10519.

 A. Gnanaprakasam, V. Sivakumar and M. Thirumarimurugan, Water Sci Technol, 2016, 74, 1426–1435.

4. P. Velusamy and G. Lakshmi, India J Chem, 2017, 56, 43–49.

5. N. Thirugnanam and D. Govindarajan, Int J Recent Sci Res, 2016, 7, 13377–13382.

6. S. Sood, A. Umar, M.S. Kumar, A.S.K. Sinha and S.K. Kumar, Ceram Int., 2015, 41, 3533–3540.

7. F. Soltani-nezhad, A. Saljooqi, A. Mostafavi and T. Shamspur, Ecotoxicol. Environ. Safe., 2020, 189, 109886.

8. 37. P. Huo, M. Zhou, Y. Tang, X. Liu, C. Ma, L. Yu and Y. Yan, J. Alloys Compd. 2016, 670, 198-209.

9. V.L. Gole and A. Priya, J. Water Process Eng., 2017, 19, 101-105.

10. S. Kaur, S. Sharma, A. Umar, S. Singh, S.K. Mehta and S.K. Kansal, Superlattices Microstruct., 2017, 103, 365-375.

 S. Kumar, V. Sharma, K. Bhattacharyya, V. Krishnan, Mater. Chem. Front., 2017, 1, 1093-1106.

12. Y-R. Jianga, H-P. Lina, W-H Chungb, Y-M. Daia, W-Y. Linb and C-C. Chena, J. Hazard. Mater., 2015, 283, 787–805.

13. M. Mittal, M. Sharma and O.P. Pandey, Sol. Energy, 2014, 110, 386–397.

14. C. Sahoo, A.K. Gupta and A. Pal, Dyes Pigm., 2005, 66, 189-196.

15. S. Ameen, M. S. Akhtar, M. Nazim, H-S. Shin, Mater. Lett., 2013, 96, 228–232.