Supporting Information

Practical photocatalytic and sonophotocatalytic reduction of nitroarenes in water under blue LED irradiation using β -CD modified TiO₂ as green nest photocatalyst

Leila Ghasemi^a, Ayub Ahmadi^a, Raheleh Abedini^a, Foad Kazemi,^{a, b*}, Babak Kaboudin^a

^a Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 49195-1159, Zanjan, Iran.

^b Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran

*e-mail: kazemi f@iasbs.ac.ir

Experimental

Materials

Nitro compounds, Sodium sulfide, Sodium sulfite, Thiourea, Oxalic acid, and Ammonium formate were purchased from Merck Co, Beta-cyclodextrin and acetic anhydride were purchased from Sigma and Degussa P25 from Degussa AG-Germany. All other reagents were analytical grade and used as received.

General procedure for photocatalytic reduction of nitro compounds

In a 25 ml round bottom Pyrex flask, 1.2 mmol Nitro compounds, 0.15 g of β -CD, 7.5 mg of TiO₂-P25, and 0.86 g (3.6 mmol) of Na₂S.9H₂O as a sacrificial compound was dissolved in 10 ml of deionized water. The reaction mixture was deoxygenated by blowing argon gas (10 min) and sealed with a septum, and it was irradiated with sunlight and a blue LED separately. Reaction progress and product production efficiency were measured using Thin-layer chromatography (TLC) and Gas Chromatography. It should be noted that to check the reaction progress organic material was extracted with ethyl acetate then the organic phase was dried using anhydrous sodium sulfate (Table 2).

General procedure for sonophotocatalytic reduction of nitro compounds

In a 25 ml round bottom Pyrex flask, 1.2 mmol Nitro compounds, 0.15 g of β -CD, 7.5 mg of TiO₂-P25, and 0.86 g (3.6 mmol) of Na₂S.9H₂O as a sacrificial compound was dissolved in 10 ml of water. The reaction mixture was deoxygenated by blowing argon gas (10 min), sealed with a septum, and then placed in an ultrasonic bath and then, the flask was irradiated with a blue LED for 2 hours. Reaction progress and product production efficiency were measured using Thin-layer chromatography (TLC) and Gas Chromatography. It should be noted that to check the reaction progress organic material was extracted with ethyl acetate then the organic phase was dried using anhydrous sodium sulfate (Table 2).

General procedure for one-pot N-acetylation of the nitro compounds

In a round, bottom Pyrex flask with a volume of 25 ml, 1.2 mmol Nitro compounds, and 3.6 mmol acetic android weight was added to the reaction flask. Then 0.15 g of β -CD, 7.5 mg of commercial TiO₂ (TiO₂-P25), and 0.86 g (3.6 mmol) of Na₂S.9H₂O as a sacrificial compound were dissolved in 10 ml of water. The reaction mixture was deoxygenated by blowing argon gas (10 min) and sealed with a septum. Then the flask was irradiated under stirring with a blue LED for 12 hours. After completion of the reaction, organic material was extracted with ethyl acetate then the organic phase was dried using anhydrous sodium sulfate. Reaction progress and product production efficiency were measured using Thin-layer chromatography (TLC) and Gas Chromatography (Table 3).

Entry	A 11'4'	Yield
	Additive	(%) ^a
1	-	0
2	Thiourea	5
3	Oxalic acid	15
4	Ammonium	10
	formate	10
5	Sodium sulfite	8
6	sodium sulfide	98

Table S1. Photoreduction of nitrobenzene using β -CD-TiO₂ in present various sacrificial additives.

^aGC yield, Reaction condition: photocatalyst 7.5 mg; nitro compound (1.2 mmol); irradiation with blue LED (10 W) at 5hr.

T 11 CO		C (1)	
Table S2.	Optimization	of acetylating	agent amounts

Entry	Acetic	Yield (%)	Source of
	anhydride		light
1	1.2	11	Blue LED
2	2.4	56	Blue LED
3	3.6	97	Blue LED
4	3.6	0	Sun light

 $\begin{array}{l} \mbox{Reaction condition: TiO_2-P25 (7.5 mg); nitro compound (1.2 mmol);} \\ \mbox{Na}_2S (3.6 mmol); \beta\mbox{-CD (15 mg)}. \end{array}$

Fig S1: FTIR spectrum of TiO₂-P25

Fig S2: FTIR spectrum of β -CD-TiO₂

Fig S3: Plot of the transformed Kubelka–Munk function versus the energy of light absorbed by the TiO₂ (a) and (b) β -CD-TiO

Fig S4: TEM images of β -CD-TiO₂ (a) and TiO₂ P25 (b)

Fig S5: XRD β -CD-TiO₂ and reused β -CD-TiO₂

Figure S6: Schematic of Sonophoto reactor

Characterization of Products:

Fig S8: ¹³C NMR (100 MHz; CDCl₃) of Aniline

Fig S9:1H-NMR (400 MHz; CDCl₃) of 3-Chloroaniline

Fig S10: ¹³C NMR (100 MHz; CDCl₃) of 3-Chloroaniline

Fig S11:1H-NMR (400 MHz; CDCl₃) of 4-Iodoaniline

Fig S12: ¹³C NMR (100 MHz; CDCl₃) of 4-Iodoaniline

Fig S13:1H-NMR (400 MHz; CDCl₃) of m-Toluidine

Fig S14: ¹³C NMR (100 MHz; CDCl₃) of m-Toluidine

Fig S15:¹H-NMR (400 MHz; CDCl₃) of 3-Nitroaniline

Fig S16:¹³C-NMR (100 MHz; CDCl₃) of 3-Nitroaniline

Fig S17:¹H-NMR (400 MHz; DMSO) of 1,4-Diaminobenzene

Fig S18:¹³C-NMR (100 MHz; DMSO) of 1,4-Diaminobenzene

Fig S19:1H-NMR (400 MHz; DMSO) of 4-Aminophenol

Fig S20:13C-NMR (100 MHz; DMSO) of 4-Aminophenol

Fig S21:1H-NMR (400 MHz; DMSO) of 4-Aminobenzyl alcohol

Fig S22:13C-NMR (100 MHz; DMSO) of 4-Aminobenzyl alcohol

Fig S23:¹H-NMR (400 MHz; DMSO) of 4-Fluoroaniline

Fig S24:13C-NMR (100 MHz; DMSO) of 4-Fluoroaniline

Fig S25:¹H-NMR (400 MHz; CDCl₃) of 4-Nitroaniline

Fig S26:¹³C-NMR (100 MHz; CDCl₃) of 4-Nitroaniline

Fig S27:1H-NMR (400 MHz; CDCl₃) of 4-Aminobenzophenone

Fig S28:¹³C-NMR (100 MHz; CDCl₃) of 4-Aminobenzophenone

Fig S29:1H-NMR (400 MHz; DMSO) of 2-Chloroaniline

Fig S30:1H-NMR (100 MHz; DMSO) of 2-Chloroaniline

Fig S31:1H-NMR (400 MHz; DMSO) of p-Toluidine

Fig S32: ¹³C NMR (100 MHz; DMSO) of p-Toluidine

Fig S33:¹H-NMR (400 MHz; CDCl₃) of 4-Chloroaniline

Fig S34:13C-NMR (100 MHz; CDCl₃) of 4-Chloroaniline

Fig S35:¹H-NMR (400 MHz; CDCl₃) of 2-Nitroaniline

Fig S36:¹³C-NMR (100 MHz; CDCl₃) of 2-Nitroaniline

Fig S37:¹H-NMR (400 MHz; CDCl₃) of 3-Aminoacetophenone

Fig S38:¹³C-NMR (100 MHz; CDCl₃) of 3-Aminoacetophenone

Fig S39:1H-NMR (400 MHz; DMSO) of 3-Aminobenzyl alcohol

Fig S40:13C-NMR (100 MHz; DMSO) of 3-Aminobenzyl alcohol

Fig S41:¹H-NMR (400 MHz; CDCl₃) of N-Phenylacetamide

Fig S42:¹³C-NMR (100 MHz; CDCl₃) of N-Phenylacetamide

Fig S43:1H-NMR (400 MHz; DMSO) of N-(3-(Hydroxymethyl)phenyl)acetamide

Fig S44:¹³C-NMR (100 MHz; DMSO) of N-(3-(Hydroxymethyl)phenyl)acetamide

Fig S45:¹H-NMR (400 MHz; DMSO) of N-(3-Methylphenyl)acetamide

Fig S46:¹³C-NMR (100 MHz; DMSO) of N-(3-Methylphenyl)acetamide

Fig S47:1H-NMR (400 MHz; DMSO) of N-(4-Fluorophenyl)acetamide

Fig S48:13C-NMR (100 MHz; DMSO) of N-(4-Fluorophenyl)acetamide

Fig S49:¹H-NMR (400 MHz; CDCl₃) of N-(4-Methoyphenyl)acetamide

Fig S50:13C-NMR (100 MHz; CDCl₃) of N-(4-Methoxyphenyl)acetamide

Fig S51:¹H-NMR (400 MHz; DMSO) of N-(4-Nitrophenyl)acetamide

Fig S52:¹³C-NMR (100 MHz; DMSO) of N-(4-Nitrophenyl)acetamide

Fig S53:¹H-NMR (400 MHz; CDCl₃) of *N*-(3-Acetylphenyl)acetamide

Fig S54:¹³C-NMR (100 MHz; CDCl₃) of N-(3-Acetylphenyl)acetamide

Fig S55:¹H-NMR (400 MHz; CDCl₃) of *N*-(3-Chlorophenyl)acetamide

Fig S56:¹³C-NMR (100 MHz; CDCl₃) of N-(3-Chlorophenyl)acetamide

Fig S57:¹H-NMR (400 MHz; CDCl₃) of N-(p-Tolyl)acetamide

Fig S58:¹³C-NMR (100 MHz; CDCl₃) of N-(p-Tolyl)acetamide