Symmetric Dicyanobenzothiadiazole (DCBT) Dyes with 1.5 V Excited State Reduction Potential Range

Qing Yun Li,¹ Ethan C. Lambert,¹ Ravinder Kaur,¹ Nathan I. Hammer,¹ and Jared H. Delcamp^{*,1,2}

 Department of Chemistry and Biochemistry, 322 Coulter Hall University of Mississippi, University, MS 38677, USA

2. Materials and Manufacturing Directorate, Air Force Research Laboratory, 2230 Tenth Street Wright-Patterson AFB, OH 45433, USA

Corresponding author email: delcamp@olemiss.edu

Table of Contents:

1. Computational Data	S3
2. Steady-State Optical Spectroscopy and Electrochemical Data	S5
3. NMR Spectra	S18
4. XYZ coordinates, Frequency, and Total Energy Information	S35
5. Time-Correlated Single Photon Counting Kinetics/Fitting	S51

1. Computational Data

(XYZ coordinates, frequency information, and total energies are found at the end of this document.)

LUMO

номо Figure S5: HOMO and LUMO orbitals of (*p*-OHx)₂DCBT.

Figure S6: HOMO and LUMO orbitals of (TAA-(*m*-CF₃)₄)₂DCBT.

Figure S7: HOMO and LUMO orbitals of (TAA-(OHx))₂DCBT.

Table S1: Summ	nary of di	pole and o	lihedral ang	gles at th	ne two aryl-E	OCBT bonds	for the D	CBT dyes
obtained after D	FT geom	etry optin	nizations at	the M0	6-2X/6-3110	G(d,p) level	of theory.	,
	1101/0		01:11	0 /	T 7 (0 111	D' 1	D'1 1 1

Dye ^a	HOMO	LUMO	Orbitals ^b	%	Vert.	Oscillator	Dipole	Dihedral
	(eV)	(eV)		Cont.	Trans.	Strength	(D)	(°)°
					(nm eV)			
<i>p</i> -CN	-8.65	-3.23	H→L	96%	347 3.57	0.4667	6.1517	48.45
TMS-thio	-7.41	-2.68	H→L	98%	421 2.95	0.5452	6.3589	36.01
TAA-(OHx)	-6.13	-2.29	H→L	91%	495 2.51	0.7089	6.7772	45.33
			H-2→L	6%				
Ar-Ar-Ester	-7.79	-2.75	H→L	90%	374 3.32	0.7356	3.0056	47.44
			H-2→L	2%				
			H-4→L	4%				
tolyl	-8.15	-2.60	H→L	97%	343 3.61	0.2192	6.2439	61.09
DMA	-6.50	-2.18	H→L	96%	456 2.72	0.5018	6.1511	44.29
$TAA-(m-CF_3)_4$	-7.58	-3.04	H→L	87%	406 3.05	0.7081	5.7463	47.36
			H-2→L	8%				
<i>p</i> -OHx	-7.38	-2.47	H→L	97%	394 3.15	0.3991	6.6767	46.22

^aDyes are coded by their aryl substituents. ^bAll transitions are $S_0 \rightarrow S_1$. HOMO is denoted by H and LUMO is denoted by L. ^cDihedral is the average of both aryl-DCBT bonds.

2. Steady-state Optical Spectroscopy and Electrochemical Data

Figure S8: Normalized absorption and emission curve plot of (Ar-Ar-Ester)₂DCBT in dichloromethane.

Figure S9: Normalized absorption and emission curve plot of (DMA)₂DCBT in dichloromethane. Raw data is plotted in pink, and a fitted trace is shown in red.

Figure S11: Normalized absorption and emission curve plot of $(p-OHx)_2DCBT$ in dichloromethane.

Figure S12: Normalized absorption and emission curve plot of $(TAA-(m-CF_3)_4)_2DCBT$ in dichloromethane.

Figure S13: Normalized absorption and emission curve plot of $(TAA-(OHx))_2DCBT$ in dichloromethane. Raw data is plotted in pink, and a fitted trace is shown in red.

Figure S14: Normalized absorption and emission curve plot of (TMS-thio)₂DCBT in dichloromethane.

Figure S15: Normalized absorption and emission curve plot of (tolyl)₂DCBT in dichloromethane. Raw data is plotted in pink, and a fitted trace is shown in red.

Figure S17: Absorption spectra of DCBT dyes in DCM plotted as molar absorptivity coefficients.

Figure S18: Normalized absorption spectra of DCBT core and (tolyl)₂DCBT in dichloromethane.

Figure S20. Cyclic voltammogram collected for DCBT core in dichloromethane solution with 0.1 M Bu_4NPF_6 as electrolyte, platinum counter electrode, Ag wire reference electrode and a glassy carbon working electrode. Ferrocenium/Ferrocene was used as a reference standard, taken as 0.70 V versus NHE in DCM and oxidation potentials are reported versus normal hydrogen electrode (NHE).

Figure S21. Example photochemical transformations driven by (p-OHx)₂DCBT.

Figure S25: ¹H NMR of (TAA-(*m*-CF₃)₄)₂DCBT in CDCl₃ at 400 MHz.

Figure S30: Variable temperature ¹H NMR of (tolyl)₂DCBT at 80°C (top, blue) and 25°C (bottom, red) in (CD₃)₂SO at 400 MHz.

Figure S31: ¹H NMR of (p-OHx)₂DCBT in CDCl₃ at 400 MHz.

4. XYZ coordinates, Frequency, and Total Energy Information (Ar-Ar-Ester)₂DCBT Ground State XYZ from DFT Geometry Optimization Energy = -2302.8941114 Hartrees No imaginary frequencies were observed

Ν	-1.23925 2.42184 -0.00062
С	-0.71987 1.19799 0.00327
С	0.71987 1.19799 -0.00329
Ν	1.23925 2.42183 0.00061
S	0.00001 3.46163 -0.00003
С	-1.47186 -0.02483 0.00293
С	-0.72519 -1.17972 0.0076
С	0.72518 -1.17972 -0.0076
С	1.47186 -0.02484 -0.00293
С	-2.94907 -0.00066 -0.00723
С	2.94907 -0.00067 0.00723
С	-3.64767 0.82959 0.87434
С	-5.03284 0.83841 0.87893
С	-5.75861 0.03335 -0.00417
С	-5.05551 -0.78197 -0.89462
С	-3.66987 -0.80167 -0.89621
С	3.66987 -0.80165 0.89624
С	5.05551 -0.78195 0.89464
С	5.75861 0.03334 0.00417
С	5.03284 0.83838 -0.87895
С	3.64767 0.82956 -0.87436
С	-7.24028 0.04513 0.0033
С	7.24028 0.04513 -0.0033
С	7.94253 1.24451 -0.16407
С	9.32789 1.25416 -0.17128
С	10.03438 0.06273 -0.02008
С	9.34682 -1.13892 0.13972
С	7.95993 -1.14426 0.14864
С	-7.95993 -1.14427 -0.14861
С	-9.34682 -1.13892 -0.13969
С	-10.03438 0.06273 0.02008
С	-9.32789 1.25416 0.17125
С	-7.94253 1.24452 0.16404
С	-11.52314 0.13011 0.03695
0	-12.09183 -1.07401 -0.11762
0	-12.15454 1.14391 0.1732
С	11.52314 0.13011 -0.03695
0	12.15454 1.1439 -0.17322
0	12.09183 -1.07401 0.11765
С	13.52 -1.07314 0.10853

С	-13.51999 -1.07314 -0.1085
С	-1.37686 -2.45937 0.06173
Ν	-1.87758 -3.49296 0.1114
С	1.37685 -2.45938 -0.06172
Ν	1.87755 -3.49297 -0.11139
Н	-3.10277 1.45462 1.56984
Н	-5.56126 1.45801 1.59396
Н	-5.599 -1.38783 -1.60988
Н	-3.14548 -1.42929 -1.60649
Н	3.14548 -1.42925 1.60653
Н	5.59901 -1.3878 1.60992
Н	5.56126 1.45796 -1.59399
Н	3.10277 1.45458 -1.56988
Н	7.39556 2.17555 -0.25716
Н	9.88367 2.17679 -0.2853
Н	9.90206 -2.0614 0.24735
Н	7.42571 -2.08218 0.24673
Н	-7.42571 -2.08218 -0.24667
Н	-9.90205 -2.0614 -0.24729
Н	-9.88367 2.1768 0.28525
Н	-7.39556 2.17556 0.25711
Н	13.81692 -2.10961 0.24165
Н	13.90256 -0.45403 0.92025
Н	13.89146 -0.6833 -0.83939
Н	-13.89145 -0.68328 0.83941
Н	-13.81691 -2.10962 -0.24158
Н	-13.90256 -0.45405 -0.92023

(DMA)₂DCBT Ground State XYZ from DFT Geometry Optimization Energy = -1653.0329906 Hartrees No imaginary frequencies were observed

Ν	-1.23917 2.36851 -0.01257
С	-0.72089 1.14524 -0.00182
С	0.72091 1.14523 0.00182
Ν	1.23922 2.36848 0.01257
S	0.00004 3.41071 -0.00004
С	-1.47972 -0.07742 -0.00258
С	-0.72539 -1.23004 0.01005
С	0.72536 -1.23005 -0.01004
С	1.47972 -0.07745 0.00261
С	-2.95008 -0.05164 -0.0249
С	2.95008 -0.05168 0.02492
С	3.68004 -0.89654 0.86724
С	5.06123 -0.88273 0.8867
С	5.78875 -0.01495 0.0458
С	5.05046 0.83499 -0.80521
С	3.66925 0.82098 -0.79972
С	-3.66925 0.82104 0.79971
С	-5.05047 0.83504 0.8052
С	-5.78875 -0.01492 -0.04579
С	-5.06123 -0.88273 -0.88666
С	-3.68004 -0.89654 -0.8672
Ν	-7.16115 0.00622 -0.06002
С	-7.87401 0.80829 0.91334
С	-7.88246 -0.99111 -0.8255
Ν	7.16115 0.0062 0.06003
С	7.88248 -0.99108 0.82555
С	7.874 0.80826 -0.91336
С	-1.37143 -2.51118 0.08436
Ν	-1.86528 -3.54726 0.15549
С	1.37137 -2.51121 -0.08439
Ν	1.86516 -3.54731 -0.15556
Η	3.15966 -1.57127 1.5363
Η	5.57444 -1.55302 1.56107
Η	5.55766 1.511 -1.47868
Η	3.13667 1.48987 -1.46338
Η	-3.13668 1.48995 1.46337
Η	-5.55767 1.51106 1.47865
Н	-5.57443 -1.55305 -1.561
Н	-3.15965 -1.57129 -1.53623
Η	-7.62476 1.86785 0.80634
Н	-7.64996 0.50404 1.94344

66 0.70026 0.74749
6 -0.90837 -1.89209
-0.83025 -0.7004
9 -2.01118 -0.50062
03 -2.01116 0.50072
61 -0.90829 1.89214
01 -0.83021 0.70045
05 0.50398 -1.94344
65 0.70023 -0.74751
75 1.86782 -0.80637

(*p*-CN)₂DCBT Ground State XYZ from DFT Geometry Optimization Energy = -1569.6138547 Hartrees No imaginary frequencies were observed

Ν	1.23865 2.34188 -0.00507
С	0.71924 1.11775 -0.00575
С	-0.71925 1.11775 0.00572
Ν	-1.23865 2.34187 0.00499
S	0. 3.3813 -0.00005
С	1.46812 -0.1053 -0.0048
С	0.72485 -1.26177 -0.00628
С	-0.72485 -1.26177 0.00631
С	-1.46812 -0.1053 0.0048
С	2.94735 -0.07908 0.00259
С	-2.94735 -0.07908 -0.00259
С	3.63557 0.73982 -0.8979
С	5.01968 0.76216 -0.90535
С	5.72953 -0.02525 0.00362
С	5.0513 -0.83601 0.91446
С	3.66619 -0.86197 0.90933
С	-3.6662 -0.86199 -0.90931
С	-5.0513 -0.83603 -0.91444
С	-5.72953 -0.02525 -0.00362
С	-5.01967 0.76218 0.90533
С	-3.63557 0.73984 0.89788
С	1.37938 -2.53998 -0.05153
Ν	1.88766 -3.57014 -0.0907
С	-1.37938 -2.53998 0.0516
Ν	-1.88765 -3.57014 0.09081
С	-7.16601 0.00555 -0.00371
Ν	-8.31531 0.03394 -0.00362
С	7.16601 0.00555 0.00372
Ν	8.31531 0.03394 0.00362
Η	3.08439 1.35338 -1.59804
Н	5.55665 1.38565 -1.60837
Η	5.60989 -1.43825 1.61901
Н	3.14241 -1.48641 1.62224
Н	-3.14242 -1.48645 -1.6222
Н	-5.6099 -1.43829 -1.61897
Н	-5.55665 1.38569 1.60834
Н	-3.08439 1.35341 1.598

(*p*-OHx)₂DCBT Ground State XYZ from DFT Geometry Optimization Energy = -1614.16766 Hartrees No imaginary frequencies were observed

Ν	-1.1543	-2.39113 -0.06746
С	-0.67877	-1.15003 -0.07411
С	0.7609	-1.09907 -0.06817
Ν	1.32255	-2.3037 -0.07215
S	0.12067	-3.38782 -0.0692
С	-1.47725	0.04472 -0.07684
С	-0.76862	1.22418 -0.08423
С	0.68129	1.27573 -0.06133
С	1.47217	0.14986 -0.06609
С	-2.94971	-0.03473 -0.06376
С	2.9467	0.17756 -0.0761
С	-3.62508	-0.91419 -0.92407
С	-5.00225	-0.97698 -0.92757
С	-5.74741	-0.17466 -0.05603
С	-5.09061	0.69053 0.81827
С	-3.70249	0.75484 0.80303
С	3.64712	1.02267 -0.9489
С	5.02604	1.04832 -0.95311
С	5.74737	0.23331 -0.0749
С	5.06582	-0.61534 0.79807
С	3.67693	-0.64316 0.78258
0	-7.08924	-0.31173 -0.1326
0	7.09271	0.33389 -0.14909
С	7.86522	-0.46738 0.72254
С	-7.88486	0.49326 0.71547
С	-1.46293	2.48064 -0.14812
Ν	-1.99783	3.49676 -0.20563
С	1.28471	2.5781 0.00392
Ν	1.74597	3.62944 0.06569
Н	-3.06051	-1.54216 -1.60081
Н	-5.53661	-1.63934 -1.59647
Н	-5.63901	1.31479 1.5095
Н	-3.20467	1.42522 1.49303
Η	3.10483	1.65463 -1.64157
Н	5.57694	1.69089 -1.62762
Н	5.59829	-1.25509 1.4878
Н	3.15679	-1.30818 1.45966
Н	8.9037	-0.23189 0.50399
Н	7.68703	-1.53191 0.54226
Н	7.65056	-0.23165 1.76927
Η	-8.9169	0.23976 0.48683

Н	-7.71783	1.55663	0.51978
Н	-7.68143	0.27764	1.76876

 $(TAA-(m-CF_3)_4)_2DCBT$ Ground State XYZ from DFT Geometry Optimization Energy = -5116.2161653 Hartrees No imaginary frequencies were observed

Ν	-1.23913 -2.14176 0.73554
С	-0.71801 -0.99964 0.29766
С	0.72082 -0.99395 0.31817
Ν	1.2383 -2.13662 0.75899
S	-0.00203 -3.11019 1.12079
С	-1.46784 0.14066 -0.14684
С	-0.72035 1.21953 -0.55814
С	0.72909 1.22812 -0.52974
С	1.47373 0.14951 -0.1126
С	-2.94374 0.11626 -0.1357
С	2.95052 0.12515 -0.09603
С	-3.63649 -0.98165 -0.65662
С	-5.0198 -1.00798 -0.6585
С	-5.74357 0.05033 -0.10299
С	-5.05964 1.1424 0.43362
С	-3.67502 1.1769 0.40491
С	3.68842 0.55215 -1.20307
С	5.07333 0.5375 -1.18042
С	5.74957 0.0847 -0.0467
С	5.01974 -0.35407 1.06032
С	3.63581 -0.33457 1.03284
Ν	-7.16009 0.0061 -0.07777
С	-7.81956 -1.1993 0.24707
С	-7.90862 1.18139 -0.31086
N	7.16774 0.06539 -0.02019
С	7.88821 -0.36958 -1.1532
С	7.85324 0.45613 1.15054
С	9.08446 0.25668 -1.51477
С	9.78643 -0.18539 -2.62492
С	9.3153 -1.22999 -3.41141
С	8.12114 -1.83604 -3.04991
С	7.4125 -1.42774 -1.92825
С	8.99274 -0.23311 1.5693
С	9.65931 0.16758 2.71841
С	9.20368 1.2312 3.48494
С	8.06124 1.90095 3.06607
С	7.39222 1.53564 1.90757
С	-7.51036 2.08262 -1.30376
С	-8.24795 3.23401 -1.52249
С	-9.3969 3.51025 -0.78822
С	-9.78495 2.60705 0.18812

С	-9.04857 1.45658 0.44241
С	-9.00871 -1.55084 -0.40092
С	-9.64888 -2.73352 -0.0711
С	-9.12377 -3.60153 0.88073
С	-7.94021 -3.24774 1.50888
С	-7.29207 -2.05526 1.21304
C	-1 37327 2 39129 -1 07263
Ň	-1.88291 3.3323 -1.49246
C	1 3848 2 44153 -0 93178
N	1 89654 3 42001 -1 25136
C	-11 03989 2 83632 0 98485
F	-12 0246 2 0254 0 57762
F	-10 8441 2 58696 2 28574
F	-11 4823 4 09122 0 87299
C C	-7 78603 4 22996 -2 55189
F	-8 82157 4 80054 -3 17805
F	-7.07758 5.21417 -1.98666
F	-7.01054 3.66251 -3.48048
r C	-10.95582 -3.0874 -0.72702
F	
F	
F	-11 14427 -2 41081 -1 86436
r C	-7 30572 -4 17583 -2 50763
F	-6 29336 -4 85915 1 95578
F	-6 79903 -3 50481 3 54894
F	-8 17616 -5 07006 2 98345
C	7 54487 -2 93775 -3 89605
F	7.01651 -3.90982 -3.14222
F	6.56253 -2.47889 -4.68321
F	8.46484 -3.49232 -4.68963
C	11.10603 0.45412 -2.9615
F	12.11828 -0.18388 -2.36094
F	11.34629 0.42613 -4.27621
F	11.15353 1.73038 -2.56472
С	7.50316 3.02139 3.90043
F	6.9622 3.97985 3.14124
F	6.53852 2.5778 4.7183
F	8.44162 3.5864 4.66543
С	10.91937 -0.55571 3.10829
F	11.97151 -0.10201 2.41619
F	11.19991 -0.40228 4.40559
F	10.82693 -1.86849 2.86353
Н	-3.08791 -1.81112 -1.08308
Н	-5.54723 -1.85182 -1.08658
Н	-5.61378 1.95995 0.8785
Н	-3.1597 2.02631 0.83627

Н	3.17933 0.90147 -2.09287
Н	5.63452 0.87818 -2.04203
Н	5.54154 -0.71231 1.93952
Н	3.08137 -0.68391 1.89392
Н	9.45984 1.08912 -0.93184
Н	9.86441 -1.55934 -4.28343
Н	6.49177 -1.92928 -1.65423
Н	9.3544 -1.08234 1.00147
Н	9.72435 1.53067 4.3846
Н	6.51521 2.08621 1.588
Н	-6.62887 1.87856 -1.89939
Н	-9.97363 4.4059 -0.97779
Н	-9.36098 0.77633 1.22634
Н	-9.42559 -0.90102 -1.1605
Н	-9.62569 -4.52946 1.12198
Н	-6.37737 -1.79135 1.73068

(TAA-(OHx))₂DCBT Ground State XYZ from DFT Geometry Optimization Energy = -2877.9147101 Hartrees No imaginary frequencies were observed

N	1 22083	-2 39289 -0 07656
C	0.71297	-1 16508 -0 06658
C	-0.72835	-1.1521 -0.06531
N	-1 25783	-2 37079 -0 05612
S	-0.02767	-3.4235 -0.06667
Č	1.48062	0.05083 -0.06676
C	0.73876	1.21121 -0.05361
Ċ	-0.71144	1.22447 -0.07289
Ċ	-1.47416	0.07761 -0.06414
С	2.95142	0.01411 -0.08835
С	-2.94553	0.06641 -0.04766
С	3.66134	-0.85159 0.75148
С	5.04369	-0.86601 0.76021
С	5.77306	-0.02968 -0.09973
С	5.06334	0.81743 -0.96519
С	3.68202	0.84205 -0.94805
С	-3.6662	0.90569 0.80838
С	-5.0486	0.90223 0.82089
С	-5.76784	0.06551 -0.04612
С	-5.04784	-0.7815 -0.90428
С	-3.66623	-0.78787 -0.89122
Ν	7.17009	-0.04098 -0.09933
С	7.89129	-1.18965 0.32814
С	7.9104	1.11587 -0.47216
Ν	-7.16471	0.07486 -0.0561
С	-7.89177	1.22736 0.35354
С	-7.90128	-1.07591 -0.4514
С	-7.55191	2.49525 -0.13292
С	-8.26797	3.6094 0.25818
С	-9.3579	3.48259 1.12529
С	-9.713	2.22232 1.6003
С	-8.97152	1.10614 1.21921
С	-8.96112	-0.95365 -1.35621
С	-9.69666	-2.06228 -1.72761
С	-9.38018	-3.32486 -1.21739
С	-8.32267	-3.45657 -0.31969
С	-7.60028	-2.32993 0.06679
С	9.00066	0.99919 -1.3406
С	9.73842	2.11292 -1.69217
С	9.39309	3.37488 -1.19943
С	8.30538	3.50038 -0.3376

С	7.58124 2.3692 0.03079
С	7.57218 -2.45705 -0.1729
С	8.2808 -3.57016 0.235
С	9.34316 -3.44232 1.13541
С	9.67845 -2.18231 1.62534
С	8.9444 -1.0676 1.22613
0	10.17103 4.40669 -1.61466
0	9.98288 -4.59395 1.46384
0	-10.00256 4.63529 1.43855
0	-10.15512 -4.35127 -1.65246
Č	-11.10143 4.54987 2.31995
Ċ	-9.87044 -5.6408 -1.15448
C	11 05953 -4 50577 2 37235
C	9.84929 5.69788 -1.1424
C	1 39944 2 48491 0 023
N	1 90727 3 51382 0 09866
C	-1 34765 2 51074 -0 14484
N	-1 83382 3 55041 -0 21556
Н	3 12302 -1 50324 1 42752
Н	5.5702 -1.52089 1.44245
Н	5.60448 1.45284 -1.65424
Н	3.16232 1.49719 -1.63682
Н	-3.13939 1.55342 1.49872
Н	-5.58141 1.54611 1.50855
Н	-5.58272 -1.42817 -1.58787
Н	-3.13558 -1.44687 -1.56616
Н	-6.71396 2.59783 -0.81282
Н	-8.014 4.59718 -0.10515
Н	-10.55141 2.09151 2.27054
Н	-9.24382 0.1253 1.59148
Н	-9.20368 0.02383 -1.75678
Н	-10.52063 -1.98421 -2.42569
Н	-8.05799 -4.41849 0.09745
Н	-6.78383 -2.42951 0.77289
Н	9.26497 0.02267 -1.72965
Н	10.58548 2.03946 -2.36256
Н	8.01503 4.46159 0.0636
Н	6.73948 2.46726 0.70667
Н	6.75721 -2.55768 -0.8805
Н	8.04502 -4.55755 -0.14161
Н	10.49592 -2.05062 2.3208
Н	9.20132 -0.08687 1.60939
Н	-11.46762 5.56606 2.44454
Н	-10.79896 4.1505 3.2934
Н	-11.89773 3.92523 1.90222
Н	-10.59144 -6.30933 -1.61874

Н	-9.98597 -5.68055 -0.06651
Н	-8.85705 -5.95547 -1.42409
Н	11.42811 -5.52042 2.5025
Н	10.73124 -4.11134 3.33942
Н	11.8623 -3.87546 1.97627
Н	10.57579 6.37192 -1.58975
Н	9.92654 5.75201 -0.05174
Н	8.84122 5.99301 -1.45052

(TMS-thio)₂DCBT Ground State XYZ from DFT Geometry Optimization Energy = -2843.9624482 Hartrees No imaginary frequencies were observed

Ν	0.89636 -2.46236 -0.40357
С	0.55432 -1.1796 -0.41693
С	-0.87273 -0.98236 -0.41606
Ν	-1.55373 -2.12114 -0.41541
S	-0.47287 -3.32471 -0.40202
С	1.47205 -0.06907 -0.42003
С	0.87912 1.17615 -0.41535
С	-0.55695 1.37202 -0.38756
С	-1.46053 0.32998 -0.4095
С	2.91082 -0.32177 -0.41945
С	-2.90909 0.51251 -0.42344
С	-3.62193 1.51265 -1.03993
С	-5.01448 1.41916 -0.80796
С	-5.37539 0.36065 -0.00837
S	-3.98439 -0.55058 0.43274
С	3.56037 -1.35606 -1.05064
С	4.95654 -1.3484 -0.82327
С	5.3816 -0.33075 -0.00187
S	4.04511 0.64263 0.47274
Si	7.13998 0.04411 0.55797
Si	-7.10727 -0.11179 0.55648
С	-7.17213 -0.05196 2.42925
С	-8.28807 1.13376 -0.1956
С	-7.48811 -1.84781 -0.04195
С	7.18065 0.07118 2.43205
С	8.22858 -1.32357 -0.11909
С	7.654 1.71224 -0.12335
С	1.67887 2.3674 -0.46972
Ν	2.28461 3.343 -0.52617
С	-1.0153 2.73005 -0.30754
Ν	-1.3554 3.82614 -0.23844
Н	-3.1648 2.28074 -1.64722
Н	-5.73165 2.11694 -1.22083
Η	3.04614 -2.08931 -1.65364
Н	5.63248 -2.07782 -1.25106
Н	-6.92245 0.94567 2.79714
Н	-6.46405 -0.75794 2.87052
Н	-8.17082 -0.30899 2.79183
Н	-8.05995 2.14901 0.13768
Н	-9.31502 0.90824 0.10259
Н	-8.24611 1.11441 -1.28723

Н	-6.78001	-2.57016	0.37203
Н	-7.42933	-1.90824	-1.13092
Н	-8.49282	-2.15213	0.26274
Н	6.85329	-0.88554	2.84501
Н	6.52413	0.84982	2.82865
Н	8.19197	0.27136	2.79534
Н	7.91739	-2.30217	0.25414
Н	9.26636	-1.16484	0.18461
Н	8.20272	-1.34903	-1.21119
Н	6.99194	2.50457	0.23467
Н	7.61825	1.71683	-1.21498
Н	8.67277	1.96066	0.18551

(tolyl)₂DCBT Ground State XYZ from DFT Geometry Optimization Energy = -1463.757354 Hartrees No imaginary frequencies were observed

Ν	1 32793 -2 31339 -0 15777
C	0.76327 -1.10972 -0.14816
Č	-0.67484 -1.16011 -0.14812
N	-1.15329 -2.40109 -0.14603
S	0.12327 -3.3952 -0.15577
~ C	1.46803 0.13754 -0.1536
Ċ	0.68667 1.26594 -0.17478
C	-0.76321 1.21512 -0.18239
Č	-1.46573 0.03583 -0.15271
Ċ	2.95049 0.17696 -0.17711
Ċ	-2.94591 -0.04591 -0.15997
С	3.70634 -0.34959 0.88137
С	5.09585 -0.28072 0.78963
С	5.72518 0.28299 -0.31263
С	4.96731 0.80792 -1.35205
С	3.58344 0.75764 -1.27804
С	-3.72992 0.51629 0.85883
С	-5.11816 0.40277 0.75141
С	-5.71715 -0.23997 -0.32069
С	-4.92993 -0.80961 -1.31658
С	-3.55161 -0.71986 -1.22644
С	3.06583 -0.95728 2.10274
С	-3.14986 1.20925 2.06612
С	1.3095 2.56122 -0.17451
Ν	1.79076 3.60505 -0.17257
С	-1.47627 2.45953 -0.24734
Ν	-2.04175 3.45912 -0.29909
Н	5.6925 -0.6707 1.60712
Н	6.80708 0.32167 -0.35402
Н	5.44747 1.25893 -2.21123
Н	2.98067 1.16713 -2.0808
Н	-5.73504 0.82853 1.53542
Н	-6.79716 -0.30561 -0.37552
Н	-5.38674 -1.32203 -2.15391
Н	-2.92608 -1.16514 -1.99101
Н	2.13022 -0.45595 2.35895
Н	3.736 -0.88076 2.95923
Н	2.84366 -2.01345 1.93395
Н	-2.12358 0.90012 2.26686
Н	-3.75027 0.98217 2.94798
Н	-3.15258 2.29319 1.92752

Figure S39. TCSPC decay and fitting parameters for (TAA-(m-CF₃)₄)₂DCBT.

Figure S40. TCSPC decay and fitting parameters for (TMS-thio)₂DCBT.

Figure S41. TCSPC decay and fitting parameters for (*p*-CN)₂DCBT.

Figure S42. TCSPC decay and fitting parameters for (DMA)₂DCBT.

Figure S43. TCSPC decay and fitting parameters for (Ar-Ar-Ester)₂DCBT.

Figure S44. TCSPC decay and fitting parameters for (*p*-OHx)₂DCBT.

Figure S45. TCSPC decay and fitting parameters for (TAA-OHx)₂DCBT.

Figure S46. TCSPC decay and fitting parameters for (tolyl)₂DCBT.