Real-time in-situ monitoring using visible spectrophotometry as a tool for probing electrochemical advanced oxidation processes for dye decolorisation

Chelsea M. Schroeder, Taylor M. Koehler, Kristiane K. Ohlhorst, and Nicholas E. Leadbeater*

Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060, USA. *E-mail: nicholas.leadbeater@uconn.edu

SUPPORTING INFORMATION

TABLE OF CONTENTS

STL Files for 3D Printed Apparatus	3
Acid Orange 7 (AO7)	4
Absorbance spectra	4
Plot of percent dye remaining vs time	4
Acid Orange 10 (AO10)	5
Absorbance spectra	5
Plot of percent dye remaining vs time	5
Acid Red 18 (AR18)	6
Absorbance spectra	6
Plot of percent dye remaining vs time	6
Acid Blue 1 (AB1)	7
Absorbance spectra	7
Plot of percent dye remaining vs time	7
Basic Violet 3 (BV3)	8
Absorbance spectra	8
Plot of percent dye remaining vs time	8
Acid Violet 19 (AV19)	9
Absorbance spectra	9
Plot of percent dye remaining vs time	9

Acid Red 51 (AR51)	
Absorbance spectra	10
Plot of percent dye remaining vs time	10
Acid Red 87 (AR87)	
Absorbance spectra	11
Plot of percent dye remaining vs time	11
Acid Red 91 (AR91)	
Absorbance spectra	12
Plot of percent dye remaining vs time	12
First order rate constants	

STL Files for 3D Printed Apparatus

.stl Files for the 3D-Printed Continuous Monitoring System can be accessed at: https://drive.google.com/drive/folders/1mJG3-UcBzAMPNOvbM13GWpU37FFQ-Xp4?usp=sharing

Acid Orange 7 (AO7)

Absorbance spectra

Figure 1: AO absorbance spectrum of AO7. Conditions: graphite anode, graphite cathode, $[AO7] = 100 \ \mu\text{M}$, $[Na_2S_2O_8] = 14 \ \text{mM}$, stirring = 1000 rpm, current = 5 mA, overlay spectrum recorded every minute from 4 - 30 min. Trial 1 of 3.

Figure 2: EAP absorbance spectrum of AO7. Conditions: BDD anode, graphite cathode, $[AO7] = 100 \ \mu\text{M}$, $[Na_2S_2O_8] = 14 \ m\text{M}$, stirring = 1000 rpm, current = 5 mA, overlay spectrum recorded every minute from 4 - 30 min. Trial 1 of 3.

Figure 3: AO- and EAP-mediated decolorisation of Acid Orange 7 as a function of time at a λ_{max} = 484.16 nm.

Acid Orange 10 (AO10)

Absorbance spectra

Figure 4: AO absorbance spectrum of AO10. Conditions: graphite Figure 5: EAP absorbance spectrum of AO10. Conditions: BDD anode, graphite cathode, $[AO10] = 100 \ \mu$ M, $[Na_2S_2O_8] = 14 \ m$ M, anode, graphite cathode, $[AO10] = 100 \ \mu$ M, $[Na_2S_2O_8] = 14 \ m$ M, *stirring = 1000 rpm, current = 5 mA, overlay spectrum recorded* every minute from 4 - 30 min. Trial 1 of 3.

stirring = 1000 rpm, current = 5 mA, overlay spectrum recorded every minute from 4 - 30 min. Trial 1 of 3.

Figure 6: AO- and EAP-mediated decolorisation of AO10 as a function of time at a λ_{max} = 475.54 nm.

Acid Red 18 (AR18)

Absorbance spectra

Figure 7: AO absorbance spectrum of AR18. Conditions: graphite anode, graphite cathode, $[AR18] = 100 \ \mu$ M, $[Na_2S_2O_8] = 14 \ m$ M, anode, graphite cathode, $[AR18] = 100 \ \mu$ M, $[Na_2S_2O_8] = 14 \ m$ M, stirring = 1000 rpm, current = 5 mA, overlay spectrum recorded every minute from 6 - 40 min. Trial 1 of 3.

Figure 8: EAP absorbance spectrum of AR18. Conditions: BDD stirring = 1000 rpm, current = 5 mA, overlay spectrum recorded every minute from 6 - 40 min. Trial 1 of 3.

Figure 9: AO- and EAP-mediated decolorisation of AR18 as a function of time at a λ_{max} = 507.02 nm.

Acid Blue 1 (AB1)

Absorbance spectra

Figure 10: AO absorbance spectrum of AB1. Conditions: graphite anode, graphite cathode, $[AB1] = 100 \ \mu\text{M}$, $[Na_2S_2O_8] = 14 \ \text{mM}$, stirring = 1000 rpm, current = 5 mA, overlay spectrum recorded every minute from 10 - 60 min. Trial 1 of 3.

Figure 11: EAP absorbance spectrum of AB1. Conditions: BDD anode, graphite cathode, [AB1] = 100 μM, [Na₂S₂O₈] = 14 mM, stirring = 1000 rpm, current = 5 mA, overlay spectrum recorded every minute from 9 - 60 min. Trial 1 of 3.

Figure 12: AO- and EAP-mediated decolorisation of AB1 as a function of time at a λ_{max} pH 0.62 = 436.82 nm, λ_{max} pH 7 = 638.04 nm.

Basic Violet 3 (BV3)

Absorbance spectra

Figure 13: AO absorbance spectrum of BV3. Conditions: graphite anode, graphite cathode, [BV3] = 100 μM, [Na₂S₂O₈] = 14 mM, stirring = 1000 rpm, current = 5 mA, overlay spectrum recorded every minute from 19 - 120 min. Trial 1 of 3.

Figure 14: EAP absorbance spectrum of BV3. Conditions: BDD anode, graphite cathode, [BV3] = 100 μM, [Na₂S₂O₈] = 14 mM, stirring = 1000 rpm, current = 5 mA, overlay spectrum recorded every minute from 19 - 120 min. Trial 1 of 3.

Figure 15: AO- and EAP-mediated decolorisation of AV3 as a function of time at a λ_{max} = 589.09 nm.

Acid Violet 19 (AV19)

Absorbance spectra

Figure 16: AO absorbance spectrum of AV19. Conditions: graphite anode, graphite cathode, $[AV19] = 100 \ \mu M$, $[Na_2S_2O_8] = anode$, graphite cathode, $[AR18] = 100 \ \mu M$, $[Na_2S_2O_8] = 14 \ mM$, 14 mM, stirring = 1000 rpm, current = 5 mA, overlay spectrum recorded every minute from 25 - 105 min. Trial 1 of 3.

Figure 17: EAP absorbance spectrum of AR18. Conditions: BDD stirring = 1000 rpm, current = 5 mA, overlay spectrum recorded every minute from 14 - 105 min. Trial 1 of 3.

Figure 18: AO- and EAP-mediated decolorisation of AV19 as a function of time at a λ_{max} = 545.20 nm.

Acid Red 51 (AR51)

Absorbance spectra

Figure 19: AO absorbance spectrum of AR51. Conditions: graphite anode, graphite cathode, $[AR51] = 100 \ \mu$ M, $[Na_2S_2O_8] = anode$, graphite cathode, $[AR51] = 100 \ \mu$ M, $[Na_2S_2O_8] = 14 \ m$ M, 14 mM, stirring = 1000 rpm, current = 5 mA, overlay spectrum recorded every minute from 3 - 90 min. Trial 1 of 3.

Figure 20: EAP absorbance spectrum of AR51. Conditions: BDD stirring = 1000 rpm, current = 5 mA, overlay spectrum recorded every minute from 3 - 90 min. Trial 1 of 3.

Figure 21: AO- and EAP-mediated decolorisation of AV19 as a function of time at a λ_{max} = 525.47 nm.

Acid Red 87 (AR87)

Absorbance spectra

Figure 22: AO absorbance spectrum of AR87. Conditions: graphite anode, graphite cathode, [AR87] = 100 μ M, [Na₂S₂O₈] = anode, graphite cathode, [AR87] = 100 μ M, [Na₂S₂O₈] = 14 mM, 14 mM, stirring = 1000 rpm, current = 5 mA, overlay spectrum recorded every minute from 6 - 59 min, then every other minute every minute from 5 - 59 min, then every other minute until 105 until 105 min. Trial 1 of 3.

Figure 23: EAP absorbance spectrum of AR87. Conditions: BDD stirring = 1000 rpm, current = 5 mA, overlay spectrum recorded min. Trial 1 of 3.

Figure 24: AO- and EAP-mediated decolorisation of AR87 as a function of time at a λ_{max} = 515.90 nm.

Acid Red 91 (AR91)

Absorbance spectra

Figure 25: AO absorbance spectrum of AR91. Conditions: graphite anode, graphite cathode, $[AR91] = 100\mu M$, $[Na_2S_2O_8] =$ 14 mM, stirring = 1000 rpm, current = 5 mA, overlay spectrum recorded every minute from 2 - 45 min, then every other minute until 105 min. Trial 1 of 3.

Figure 26: EAP absorbance spectrum of AR18. Conditions: BDD anode, graphite cathode, [AR18] = 100μM, [Na₂S₂O₈] = 14 mM, stirring = 1000 rpm, current = 5 mA, overlay spectrum recorded every minute from 1 – 80 min. Trial 1 of 3.

Figure 27: AO- and EAP-mediated decolorisation of AR91 as a function of time at a λ_{max} = 519.45 nm.

First order rate constants

Table 1: First order rate constants at 20 min for nine dyes under two decolorisation protocols. AO conditions: Graphite anode and cathode, $[Dye] = 100 \ \mu\text{M}, [Na_2S_2O_8] = 14 \ \text{mM}, \text{stirring} = 1000 \ \text{rpm}, I = 5 \ \text{mA}.$ EAP conditions: BDD anode, graphite cathode, $[Dye] = 100 \ \mu\text{M}, [Na_2S_2O_8] = 14 \ \text{mM}, \text{stirring} = 1000 \ \text{rpm}, I = 5 \ \text{mA}.$

	Acid Orange 7	Acid Orange 10	Acid Red 18	Acid Blue 1	Basic Violet 3	Acid Violet 19	Acid Red 51	Acid Red 87	Acid Red 91
AO (k s ⁻¹)	3.51x10⁻³	2.42 x10 ⁻³	2.12 x10 ⁻³	1.87 x10 ⁻³	1.64 x10 ⁻³	1.15 x10 ⁻³	2.59 x10 ⁻³	2.47 x10 ⁻³	2.97 x10 ⁻³
EAP (k s ⁻¹)	3.71 x10 ⁻³	3.48 x10 ⁻³	3.17 x10 ⁻³	2.17 x10 ⁻³	1.64 x10 ⁻³	1.99 x10 ⁻³	2.60 x10 ⁻³	2.61 x10 ⁻³	3.54 x10 ⁻³