Supplementary Information

Enhancing the Electrocatalytic Performance of SnX_2 (X= S and Se) Monolayers for CO₂ Reduction to HCOOH via Transition Metal Atom Adsorption: A Theoretical Investigation

Feifei Xia^{a*}, Qing Xu^a, Fengli Yang^a, Li Shu^a and Yingpin Wen^a

^aSchool of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou

213001, Jiangsu, P. R. China

E-mail: ffxia@jsut.edu.cn.

Computational details of free energies for CO₂ reduction reduction (CRR)

In this work, the CO₂ reduction to HCOOH was assumed to take place along the following elementary step:

$$* + \mathrm{CO}_2 \to * \mathrm{CO}_2 \tag{1}$$

$$*CO_2 + H^+ + e^- \rightarrow *OOCH$$
 (2)

*OOCH+H⁺+e⁻
$$\rightarrow$$
 *HCOOH (3)

*HCOOH
$$\rightarrow$$
 *+HCOOH (4)

where * denotes the active site in the SnX_2 (X = S and Se) monolayers, and *CO₂, *OOCH and *HCOOH represent the adsorbed intermediates that are involved in CRR corresponding to twoelectron transfer process. And the Gibbs free energies of these intermediates (*CO₂, *OOCH and *HCOOH) are calculated by the following equations:

$$\Delta G_{*_{\rm CO_2}} = G_{*_{\rm CO_2}} - G_* - G_{{_{\rm CO_2}}}$$
(5)
$$\Delta G_{*_{\rm OOCH}} = G_{*_{\rm OOCH}} - G_* - G_{{_{\rm CO_2}}} - \frac{1}{2}G_{{_{\rm H_2}}}$$
(6)

$$\Delta G_{\rm *HCOOH} = G_{\rm *HCOOH} - G_{\rm *} - G_{\rm CO_2} - G_{\rm H_2} \tag{7}$$

where G_{*CO_2} , G_{*OOCH} and G_{*HCOOH} the free energy of the system with one adsorbed CO₂, OOCH and HCOOH, G_* is the free energy of the system itself, G_{H_2O} , G_{H_2} and G_{CO_2} are the free energy of H₂O, H₂ and CO₂ molecules, respectively.

To evaluate the catalytic activity, the CRR overpotential (η) is calculated from the change of free energy in the elementary step and limiting potential (U_L) at equilibrium state. And η is defined as $\eta = U_{equ} - U_L$, where U_{equ} is the equilibrium potential obtained from experimental data, U_L is calculated by $U_L = \frac{-\Delta G_{max}}{e}$, and ΔG and e are the difference of free energy of the reaction intermediate and the number of electrons transferred in the reaction. A catalyst with lower overpotential possesses better catalytic activity.

Figure S1. Side and top views of key intermediates (*H, *COOH and *OOCH) adsorption on the surface of (a)-(c) pristine SnSe₂ and (d)-(f) TM/SnSe₂ monolayers.

Figure S2. The adsorption energies of CO_2 , H_2O , CO and HCOOH adsorbed on the surface of (a)

 SnS_2 and (b) $SnSe_2$ monolayers.

Table S1. The Adsorption Energies for the CO₂, H₂O, CO and HCOOH Adsorption on the

surface	Adsorption Energy (eV)					
	CO ₂	H ₂ O	СО	НСООН		
pristine SnS ₂	-0.13	-0.12	-0.09	-0.02		
Fe/SnS ₂	-0.46	-0.99	-1.83	-1.05		
Co/SnS ₂	-0.29	-0.90	-1.77	-0.85		
Ni/SnS ₂	-0.19	-0.76	-1.63	-0.71		
pristine SnSe ₂	-0.22	-0.06	-0.19	-0.19		
Fe/SnSe ₂	-0.001	-0.81	-1.61	-0.84		
Co/SnSe ₂	-0.48	-0.99	-1.97	-1.01		
Ni/SnSe ₂	-0.29	-0.92	-1.68	-0.88		

Surface of SnX₂ (X=S and Se) Monolayers

Figure S3. Key reaction intermediate species for the CO_2 reduction reaction with two electrons transfer on SnS_2 monolayers.

Figure S4. Key reaction intermediate species for the CO_2 reduction reaction with two electrons transfer on $SnSe_2$ monolayers.

Figure S5. Free energy diagram for electroreduction of CO_2 to HCOOH (green), CO (red) and H_2 (blue) on the surface of pristine (a) SnS_2 and (b) $SnSe_2$ monolayers.

Figure S6. Free energy diagram for electroreduction of CO_2 to HCOOH (red line) and CO (blue

line) on the surface of (a) pristine SnS₂, (b) Fe/SnS₂, (c) Co/SnS₂ and (d) Ni/SnS₂ monolayers.

Figure S7. Free energy diagram for electroreduction of CO₂ to HCOOH (red line) and CO (blue line) on the surface of (a) pristine SnSe₂, (b) Fe/SnSe₂, (c) Co/SnSe₂ and (d) Ni/SnSe₂ monolayers.

Figure S8. The calculated free energy changes of *CO to *CHO during the CRR for Fe, Co and Ni adsorbed on (a)-(c) SnS₂ and (d)-(f) SnSe₂ monolayers.

The *CO intermediate added one H⁺ and one e can form *CHO intermediate during the CO₂ reduction reaction (CRR). And the Gibbs free energy of *CHO is calculated by the equation of $\Delta G_{*_{\text{CHO}}} = G_{*_{\text{CHO}}} + G_{H_{20}} - G_{*} - G_{\text{CO}_2} - \frac{1}{2}G_{H_2}$, where $G_{*_{\text{CHO}}}$ the free energy of the system with one adsorbed CHO, G_{*} is the free energy of the system itself, $G_{\text{H}_{2}\text{O}}$, $G_{\text{H}_{2}}$ and $G_{\text{CO}_{2}}$ are the free energy of H₂O, H₂ and CO₂ molecules, respectively. Our calculated results show that the free energy barrier (from *CO + H⁺ + e to *CHO) is high in this protonation step during CRR for TM/SnX₂ (X= S and Se) monolayers (shown in Figure S8), indicating unfavorable formation of formaldehyde and methanol product. Moreover, the first protonation step (* + CO₂ + H⁺ + e to *COOH) of TM/SnX₂ (X= S and Se) monolayers is endothermic and the free energy barrier is high, suggesting the difficulty of this process.

Table S2. The Potential Determining Steps (PDS), Limiting Potentials $U_{\rm L}$ (V) and Overpotentials (η/V) for CO₂ Reduction to CO on the Different Surface of SnX₂ (X=S and Se)

Monolayers

surface	PDS	$U_{ m L}$	η
pristine SnS ₂	*CO ₂ →*COOH	-1.39	1.27
Fe/SnS ₂	*СО→СО	⊣.25	1.13
Co/SnS ₂	*СО→СО	-1 .18	1.06
Ni/SnS ₂	*СО→СО	⊣.05	0.93
pristine SnSe ₂	*CO ₂ →*COOH	-1.24	1.12
Fe/SnSe ₂	$*+CO_2 \rightarrow *CO_2$	-1.03	0.91
Co/SnSe ₂	*СО→СО	-1.38	1.26
Ni/SnSe ₂	*СО→СО	-1.07	0.95

Table S3. The Limiting Potentials $U_{\rm L}$ (V) and Overpotentials (η /V) for CRR and HER on the

surface	U _L /V(HCOOH	η/V(HCOOH)	$U_{\rm L}/{\rm V(CO)}$		$U_{\rm L}/{ m V(H_2)}$
))	η, ν (CO))
pristine SnS ₂	-1.39	1.19	-1.39	1.27	-0.92
Fe/SnS ₂	-0.32	0.12	-1.25	1.13	-0.31
Co/SnS ₂	-0.23	0.03	-1.18	1.06	-0.49
Ni/SnS ₂	-0.33	0.13	-1.05	0.93	-0.80
pristine	-1.24	1.04	-1.24	1.12	-0.59
SnSe ₂					
Fe/SnSe ₂	-0.59	0.39	-1.03	0.91	-0.47
Co/SnSe ₂	-0.21	0.01	-1.38	1.26	-0.30
Ni/SnSe ₂	-0.25	0.05	-1.07	0.95	-0.45

Different Surface of SnX₂ (X=S and Se) Monolayers