Supplementary Information

Enhancing the Electrocatalytic Performance of SnX_2 (X= S and Se) Monolayers for CO₂ Reduction to HCOOH via Transition Metal Atom Adsorption: A Theoretical Investigation

Feifei Xia^{a*}, Qing Xu^a, Fengli Yang^a, Li Shu^a and Yingpin Wen^a

^aSchool of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou

213001, Jiangsu, P. R. China

E-mail: ffxia@jsut.edu.cn.

Computational details of free energies for CO² reduction reduction (CRR)

In this work, the $CO₂$ reduction to HCOOH was assumed to take place along the following elementary step:

$$
* + \text{CO}_2 \rightarrow * \text{CO}_2 \tag{1}
$$

$$
{}^{*}CO_{2} + H^{+} + e^{-} \rightarrow {}^{*}O OCH
$$
 (2)

$$
*OOCH + H^{+} + e^{-} \rightarrow *HCOOH
$$
 (3)

$$
* \text{HCOOH} \rightarrow * + \text{HCOOH} \tag{4}
$$

where * denotes the active site in the SnX_2 (X = S and Se) monolayers, and *CO₂, *OOCH and *HCOOH represent the adsorbed intermediates that are involved in CRR corresponding to twoelectron transfer process. And the Gibbs free energies of these intermediates ($*CO₂, *OOCH$ and *HCOOH) are calculated by the following equations:

$$
\Delta G_{*_{\text{CO}_2}} = G_{*_{\text{CO}_2}} - G_* - G_{\text{CO}_2}
$$
 (5)

$$
\Delta G_{*_{\text{OOCH}}} = G_{*_{\text{OOCH}}} - G_* - G_{\text{CO}_2} - \frac{1}{2} G_{\text{H}_2}
$$
 (6)

$$
\Delta G_{\rm {}^{8}HCOOH} = G_{\rm {}^{8}HCOOH} - G_{\rm {}^{8}} - G_{\rm CO_2} - G_{\rm H_2} \tag{7}
$$

where G_{*CO_2} , G_{*OOCH} and G_{*HCOOH} the free energy of the system with one adsorbed CO₂, OOCH and HCOOH, G_* is the free energy of the system itself, G_{H2O} , G_{H2} and G_{CO2} are the free energy of H₂O, H_2 and CO_2 molecules, respectively.

To evaluate the catalytic activity, the CRR overpotential (*η*) is calculated from the change of free energy in the elementary step and limiting potential (U_L) at equilibrium state. And η is defined as $\eta = U_{\text{equ}} - U_{\text{L}}$, where U_{equ} is the equilibrium potential obtained from experimental data, U_{L} is calculated by $U_L = \frac{-\Delta G_{\text{max}}}{e}$, and ΔG and *e* are the difference of free energy of the reaction intermediate and the number of electrons transferred in the reaction. A catalyst with lower overpotential possesses better catalytic activity.

Figure S1. Side and top views of key intermediates (*H, *COOH and *OOCH) adsorption on the surface of (a)-(c) pristine $SnSe₂$ and (d)-(f) $TM/SnSe₂$ monolayers.

Figure S2. The adsorption energies of CO₂, H₂O, CO and HCOOH adsorbed on the surface of (a)

 $SnS₂$ and (b) $SnSe₂$ monolayers.

Table S1. **The Adsorption Energies for the CO2, H2O, CO and HCOOH Adsorption on the**

surface	Adsorption Energy (eV)			
	CO ₂	H_2O	CO _.	HCOOH
pristine $SnS2$	-0.13	-0.12	-0.09	-0.02
Fe/SnS ₂	-0.46	-0.99	-1.83	-1.05
Co/SnS ₂	-0.29	-0.90	-1.77	-0.85
Ni/SnS ₂	-0.19	-0.76	-1.63	-0.71
pristine SnSe ₂	-0.22	-0.06	-0.19	-0.19
Fe/SnSe ₂	-0.001	-0.81	-1.61	-0.84
Co/SnSe ₂	-0.48	-0.99	-1.97	-1.01
Ni/SnSe ₂	-0.29	-0.92	-1.68	-0.88

Surface of SnX² (X=S and Se) Monolayers

Figure S3. Key reaction intermediate species for the CO₂ reduction reaction with two electrons transfer on SnS₂ monolayers.

Figure S4. Key reaction intermediate species for the CO₂ reduction reaction with two electrons transfer on SnSe₂ monolayers.

Figure S5. Free energy diagram for electroreduction of CO₂ to HCOOH (green), CO (red) and H₂ (blue) on the surface of pristine (a) $SnS₂$ and (b) $SnSe₂$ monolayers.

Figure S6. Free energy diagram for electroreduction of CO₂ to HCOOH (red line) and CO (blue

line) on the surface of (a) pristine SnS_2 , (b) Fe/SnS_2 , (c) Co/SnS_2 and (d) Ni/SnS_2 monolayers.

Figure S7. Free energy diagram for electroreduction of CO₂ to HCOOH (red line) and CO (blue line) on the surface of (a) pristine $SnSe_2$, (b) $Fe/SnSe_2$, (c) $Co/SnSe_2$ and (d) $Ni/SnSe_2$ monolayers.

Figure S8. The calculated free energy changes of *CO to *CHO during the CRR for Fe, Co and Ni adsorbed on (a)-(c) $SnS₂$ and (d)-(f) $SnSe₂$ monolayers.

The *CO intermediate added one H^+ and one e can form *CHO intermediate during the $CO₂$ reduction reaction (CRR). And the Gibbs free energy of *CHO is calculated by the equation of $G_{\text{H}_2\text{CHO}} = G_{\text{H}_2\text{O}} + G_{\text{H}_2\text{O}} - G_* - G_{\text{CO}_2} - \frac{1}{2} G_{\text{H}_2}$, where $G_{\text{H}_2\text{CO}}$ the free energy of the system with one $\Delta G_{\rm GED} = G_{\rm GED} + G_{\rm HO} - G_{\rm s} - G_{\rm GCD} - \frac{1}{2} G_{\rm H}$, where $G_{\rm ^*CHO}$ the free energy of the system w adsorbed CHO, G_* is the free energy of the system itself, G_{H_2O} , G_{H_2} and G_{CO_2} are the free energy of $H₂O$, $H₂$ and $CO₂$ molecules, respectively. Our calculated results show that the free energy barrier (from $^{\ast}CO + H^{+} + e$ to $^{\ast}CHO$) is high in this protonation step during CRR for TM/SnX₂ (X= S and Se) monolayers (shown in Figure S8), indicating unfavorable formation of formaldehyde and methanol product. Moreover, the first protonation step (* + $CO_2 + H^+$ + e to *COOH) of TM/SnX₂ $(X = S$ and Se) monolayers is endothermic and the free energy barrier is high, suggesting the difficulty of this process.

Table S2. **The Potential Determining Steps (PDS), Limiting Potentials** *U***^L (V) and** Overpotentials (η/V) for CO₂ Reduction to CO on the Different Surface of SnX₂ (X=S and Se)

Monolayers

Table S3. **The Limiting Potentials** *U***^L (V) and Overpotentials (***ƞ***/V) for CRR and HER on the**