Plasmonic Ag@Cu₂O Core-Shell Nanostructures

Exhibiting Near-Infrared Photothermal Effect

Mariia Ivanchenko,[†] Alison L. Carroll,[†] Andrea B. Brothers,[§] and Hao Jing^{†, *}

[†] Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, USA

[§] Department of Chemistry, American University, Washington, DC 20016, USA

Fig. S1. Distribution of Cu₂O shell thickness measured from TEM images of Au@Cu₂O NPs synthesized using (A) 10 μ L, (B) 20 μ L, (C) 30 μ L, (D) 40 μ L of 0.1 M Cu(NO₃)₂.

Fig. S2. SEM images of Ag@Cu₂O nanoparticles obtained using (A) 10 μ L, (B) 20 μ L, (C) 30 μ L, (D) 40 μ L of 0.1 M Cu(NO₃)₂.

Fig. S3. Photothermal Heating Set Up.

Fig. S4. Infrared thermal images showing temperature measurements of Ag@Cu₂O colloidal solutions synthesized adding (a)10 μ L, (b)20 μ L, (c) 30 μ L, (d) 40 μ L of 0.1 M Cu(NO₃)₂ under continuous 808 nm laser illumination.

Fig. S5. The linear regression plot of the natural logarithm of driving force temperature against time used for calculation of the photothermal efficiency.