Magnetoplasmonic Photonic Arrays for Rapid and Selective Colorimetric Detection of Chloride Ions in Water

Van Tan Tran^{a,*}, Van-Duong Dao^a, Huu-Quang Nguyen^b, Lemma Teshome Tufa^b, Jaebeom

Lee^b, Van-Tuan Hoang^{c,**}, Anh-Tuan Le^{c,***}

^aFaculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Viet Nam

^bDepartment of Chemistry, Chemical Engineering and Applied Chemistry, Chungnam National

University, Daejeon, 34134, Republic of Korea

^cPhenikaa University Nano Institute (PHENA), PHENIKAA University, Hanoi 12116, Viet Nam Corresponding authors:

*<u>tan.tranvan@phenikaa-uni.edu.vn</u> (V.T.Tran)

**<u>tuan.hoangvan@phenikaa-uni.edu.vn</u> (V.T.Hoang)

***<u>tuan.leanh@phenikaa-uni.edu.vn</u> (A.T.Le)

Chemicals

Ferric nitrate nonahydrate (Fe(NO₃)₃•9H₂O), sodium citrate (C₆H₅Na₃O₇•2H₂O), sodium acetate (CH₃COONa, NaAc), silver nitrate (AgNO₃), sodium chloride (NaCl), magnesium chloride (MgCl₂), nikel(II) chloride (NiCl₂), ammoni chloride (NH₄Cl), zinc chloride (ZnCl₂), cobalt chloride (CoCl₂), barium chloride (BaCl₂), strontium chloride (SrCl₂), sodium nitrite (NaNO₂), sodium fluoride (NaF), copper(II) sulfate (CuSO₄) magnesium nitrate (Mg(NO₃)₂), zinc sulfate (ZnSO₄), and ethylene glycol (EG) were purchased from Sigma-Aldrich Inc. (Yong-In, South Korea). Citric acid (C₆H₈O₇) was purchased from Hayashi Pure Chemical Ind., Ltd. (Japan). Nylon filter membrane (0.2 µm pore size, 47 mm diameter) was purchase from Whatman (UK). Deionized (DI) water (>18 MΩcm⁻¹) was used for all solution preparations and experiments. All chemicals were analytical grade reagents and used as received without further purification.

Synthesis of Ag@Fe₃O₄ NPs

To synthesize NP₁₇₅, 0.1 M of Fe(NO₃)₃•9H₂O was fully dissolved in 40 mL of Ethylene Glycol (EG), followed by the addition of 0.875 M of Sodium Acetate (NaAc) and 14.75 mM of AgNO₃. This mixture was subjected to rigorous stirring for 60 minutes and then sealed in a Teflon-lined stainless-steel autoclave (50 mL in volume). The autoclave was heated to 210 °C for 12 hours before cooling to room temperature. The resulting black products were washed multiple times with ethanol and deionized (DI) water, then dried under vacuum conditions at 60 °C for 6 hours. NP₁₅₀, NP₁₈₅, NP₂₀₀, and NP₂₃₄ were synthesized using the same procedure, but altering the Fe³⁺ precursor concentration. To make porous NP₂₃₄, oxalic acid were added individually to solutions of the Ag@Fe₃O₄ NPs (1 mg mL⁻¹). The mixtures were sonicated for 90 min in a sonication bath and then washed with DI water (with the help of a magnet) at least

thrice. For citric stabilization of NPs, 15 mg of NPs were combined with 15 ml of 3 mM citric acid, followed by 2 hours of sonication using an ultrasonic probe. The NPs were collected and washed with DI water using a magnetic stirrer. The samples were then refrigerated (4 °C) for 6 hours before utilization.

Figure S1. A) SEM, b) TEM images, c) size distribution histogram, and d) extinction spectra of NP₁₇₅.

Figure S2. SEM images of different sized MagPlas NPs: a) NP_{150} , b) NP_{175} , c) NP_{184} , and d) NP_{200} .

Figure S3. SEM image of porous 234 nm MagPlas NPs - NP_{234P}.

Figure S4. a) SEM image of MagPlas APAs and b) its corresponding fast Fourier transform (FFT) pattern.

Figure S5. Reflectance spectra of APAs in dry (n = 1) and wet (n = 1.33) states: a) APA₁₅₀, b) APA₁₇₅, c) APA₁₈₄, d) APA₂₀₀, and e) APA_{234P}. f) Wavelength shifts of reflectance dip of the APAs after wetting.

Figure S6. a) Photographs and b) reflectance spectra of MagPlas APA₁₈₄ impregnated with 50 mM AgNO₃ after adding solutions with different Cl⁻ ion concentrations (C_{Cl}). c) The dependence of λ_{dip} on Cl⁻ ion concentrations of MagPlas APA₁₈₄ impregnated with 50 AgNO₃ concentration.

Figure S7. a) Photographs and b) reflectance spectra of MagPlas APA₁₈₄ impregnated with 100

mM AgNO₃ after adding solutions with different Cl⁻ ion concentrations (C_{Cl}). c) The dependence of λ_{dip} on Cl⁻ ion concentrations of MagPlas APA₁₈₄ impregnated with 100 mM AgNO₃ concentration.

Figure S8. a) Photographs and b) reflectance spectra of MagPlas APA₁₈₄ impregnated with 500 mM AgNO₃ after adding solutions with different Cl⁻ ion concentrations (C_{Cl}). c) The dependence of λ_{dip} on Cl⁻ ion concentrations of MagPlas APA₁₈₄ impregnated with 500 mM AgNO₃ concentration.

Figure S9. a) Photographs and b) reflectance spectra of MagPlas APA₁₈₄ impregnated with 250 mM AgNO₃ after adding 5mM KBr and 5 mM KI.

Figure S10. Photographs of MagPlas APA₁₈₄ impregnated with 250 mM AgNO₃: a) right after and b) after 7 days adding 5mM NaCl.