No	Ep	<i>i</i> -guttifero (Acetone	Guttiferone Q (Methanol- <i>d</i> ₄)		
INU.	$\delta_{ m H^a}, J(m Hz)$	$\delta_{\mathrm{C}}^{\mathrm{a}}$	$\delta_{ m H^b}, J$ (Hz)	$\delta_{ ext{H}^{ ext{b}}}, J \left(ext{Hz} ight)$	$\delta_{\mathrm{C}}{}^{b}$
1		196.7			196.6
2		118.5			118.4
3		188.8			188.4
4	3.41 (s)	65.6		3.35 (s)	67.7
5		48.8			48.3
6	1.63 (<i>m</i>)	41.8		1.78 (<i>m</i>)	42.1
7	2.32 $(t, J = 7.5)$ 2.01 (m)	43.1		2.06 (dd , $J = 13.2$, 4.0) 1.60 (t , $J = 13.2$)	42.9
8		65.1			64.9
9		208.2			208.0
10		198.7			198.3
11		138.5			139.5
12	7.51 $(d, J = 7.5)$	129.5	7.57 $(d, J = 7.5)$	7.56 (<i>m</i>)	129.7
13	7.43 $(t, J = 7.5)$	128.6	7.38 $(t, J = 7.5)$	7.40 ($t, J = 7.7$)	128.9
14	7.57 $(t, J = 7.5)$	133.1	7.53 $(t, J = 7.5)$	7.54 <i>m</i>	133.3
15	7.43 (t , J = 7.5)	128.6	7.38 ($t, J = 7.5$)	7.40 (t , J = 7.7)	128.9
16	7.51 (d , J = 7.5)	129.5	7.57 (d , J = 7.5)	7.56 (<i>m</i>)	129.7
17	1.00 (s)	18.2	0.94 (s)	0.93 (s)	18.4
18	1.70 (<i>m</i>) 1.47 (<i>m</i>)	39.3		1.67 (m) 1.46 (td , $J = 12.8$, 4.1)	39.8
19	2.42 (<i>m</i>) 2.02 (<i>m</i>)	22.7		2.36 (<i>m</i>) 2.06 (<i>m</i>)	23.0
20	5.14 (<i>m</i>)	125.2	5.09 (<i>m</i>)	5.12 (brt, J = 7.0)	125.4
21		132.0		-	132.5
22	1.67 (s)	17.8	1.57 (s)	1.66 (s)	18.2
23	1.68 (s)	25.9	1.63 (s)	1.73 (s)	26.0
24	2.20 (<i>m</i>) 1.65 (<i>m</i>)	28.8		2.20 (<i>m</i>) 1.70 (<i>m</i>)	29.1
25	4.99 (<i>m</i>)	123.4	5.01 (<i>m</i>)	5.05 (brt, J = 6.5)	123.6
26		133.7		-	134.4
27	1.56 (<i>s</i>)	18.0	1.61 (s)	1.60 (s)	17.8
28	1.63 (s)	25.9	1.67 (s)	1.69 (s)	25.9
29	2.49 (<i>m</i>) 2.34 (<i>m</i>)	31.1		2.42 (<i>m</i>)	31.1
30	5.23 (<i>m</i>)	121.0	5.16 (<i>m</i>)	5.18 (br t, J = 7.3)	121.1

Table S1. ¹H NMR (500 MHz, $\delta_{\rm H}$, multi, (*J* in Hz) and ¹³C NMR (125 MHz) spectral data of **1** and guttiferone Q

31		134.7		_	135.2
32	1.62 (s)	18.1	1.66 (s)	1.65 (s)	18.0
33	1.74 (s)	26.2	1.71 (s)	1.70 (s)	26.2
^a acetone- <i>d</i> ₆					
^b methanol- d_4					

Table S2. ¹H NMR (500 MHz, $\delta_{\rm H}$, multi, (*J* in Hz) and ¹³C NMR (125 MHz) data of compounds **1** and **2** in acetone- d_6 .

	1		2	
No.	(acetone- <i>d</i> ₆)	(acetone- d_6)	
	$\delta_{ m H}$ (ppm), J (Hz)	$\delta_{ m C}$ (ppm)	$\delta_{ m H}$ (ppm), J (Hz)	$\delta_{ m C}$ (ppm)
1	_	196.7	_	206.3
2	_	118.5	-	69.9
3	_	188.8	_	43.4
4	3.41 (s)	65.6	_	43.3
5	_	48.8	-	43.1
6	1.63 (<i>m</i>)	41.8	_	62.8
7	2.32 (t, J = 7.5) 2.01 (m)	43.1	_	195.2
8	_	65.1	_	121.0
9	_	208.2	_	191.8
10	_	198.7	2.76 (<i>m</i> , 1H) 2.57 (<i>m</i> , 1H)	26.2
11	_	138.5	4.92 (<i>m</i> , 1H)	121.0
12	7.51 (d , J = 7.5)	129.5	_	134.9
13	7.43 (t , J = 7.5)	128.6	1.64 (s, 3H)	18.2
14	7.57 ($t, J = 7.5$)	133.1	1.64 (s, 3H)	26.2
15	7.43 (t , J = 7.5)	128.6	0.86 (s, 3H)	14.3
16	7.51 (d, J = 7.5)	129.5	_	37.1
17	1.00 (s)	18.2	—	24.5
18	1.70 (<i>m</i>) 1.47 (<i>m</i>)	39.3	4.99 (s, 1H)	125.2
19	2.42 (<i>m</i>) 2.02 (<i>m</i>)	22.7	_	133.0
20	5.14 (<i>br s</i>)	125.2	1.70 (s, 3H)	17.8
21	_	132.0	1.56 (s, 3H)	25.6
22	1.67 (s)	17.8	_	30.4
23	1.68 (s)	25.9	5.08 (<i>m</i> , 1H)	123.5
24	2.20 (<i>m</i>) 1.65 (<i>m</i>)	28.8	_	132.1

25	4.99 (br s)	123.4	1.69 (s, 3H)	25.8
26	_	133.7	1.59 (s, 3H)	18.1
27	1.56 (s)	18.0	-	198.6
28	1.63 (s)	25.9	_	138.3
29	2.49 (<i>m</i>) 2.34 (<i>m</i>)	31.1	7.51 (<i>d</i> , <i>J</i> = 7.5, 1H)	130.5
30	5.23 (br s)	121.0	7.42 (t, J = 7.5, 1H)	129.6
31	_	134.7	7.57 (t, J = 7.5, 1H)	133.3
32	1.62 (s)	18.1	7.42 (t, J = 7.5, 1H)	129.6
33	1.74 (<i>s</i>)	26.2	7.51 (d, J = 7.5, 1H)	130.5

Table S3. ¹H NMR (500 MHz, $\delta_{\rm H}$, multi, (*J* in Hz) and ¹³C NMR (125 MHz) spectral data comparison of compound **3** in acetone- d_6 .

	3		Guttiferone K	
No.	(acetone- d_6)		(methanol- <i>d</i> ₄)	
	$\delta_{ m H}$ (ppm), J (Hz)	$\delta_{ m C}$ (ppm)	$\delta_{ m H}$ (ppm), J (Hz)	$\delta_{ m C}$ (ppm)
1	_	196.9	_	196.7
2	_	117.8	_	119.9
3	_	191.9	_	191.0
4	_	68.0	_	69.4
5	_	51.3	_	51.6
6	1.60 (<i>m</i>)	40.3	1.75 (<i>m</i>)	42.0
7	2.07 (m) 1 44 (m)	42.8	2.03 (dd, J = 13.3, 3.3) 1 44 (dd, $J = 13.3, 3.3$)	43.2
8	_	65.1	_	64.1
9	_	207.9	_	209.2
10	_	196.5	_	196.7
11	_	129.8	_	130.3
12	7.19 (d, J = 2.0)	117.4	7.20 (d , J = 2.1)	117.4
13	_	151.3	-	146.5
14	_	145.4	-	152.6
15	6.80 (d, J = 8.0)	114.9	6.69 (d, J = 8.4)	115.3
16	7.01 (<i>dd</i> , <i>J</i> = 8.5, 2.0)	124.6	6.95 (dd, J = 8.4, 2.1)	125.1
17	2.79 (<i>dd</i> , <i>J</i> = 14.5, 8.5) 2.68 (<i>m</i>)	26.5	2.73 (<i>dd</i> , <i>J</i> = 13.0, 7.8) 2.65 (<i>dd</i> , <i>J</i> = 13.0, 4.3)	26.7
18	4.92 (<i>m</i>)	121.4	4.88 (<i>m</i>)	121.5
19	_	134.2	_	135.2
20	1.70 (s)	18.3	1.69 (s)	18.5
21	1.66 (s)	25.9	1.62 (s)	26.4
22	0.86(s)	17.8	0.81 (s)	16.4

23	1.81 (m) 1.77 (m)	36.9	1.68 (<i>m</i>)	37.6
24	2.12 (m) 1.99 (m)	25.0	2.07 (<i>m</i>) 1.77 (<i>m</i>)	30.2
25	5.01 (br t, J = 6.8)	125.4	5.00 (br t, J = 7.0)	123.7
26	—	131.9	_	134.7
27	1.66(s)	18.2	1.67 (s)	18.3
28	1.60(s)	25.9	1.57 (s)	26.0
29	2.55 (m) 2.45 (m)	31.4	2.51 (<i>dd</i> , <i>J</i> = 14.5, 8.8) 2.44, (<i>dd</i> , <i>J</i> = 14.5, 8.8)	31.8
30	5.09 (br t, J = 6.0)	120.9	5.10 (br t, J = 7.1)	121.1
31	_	134.7	-	135.7
32	1.67 (s)	18.1	1.67 (s)	18.4
33	1.70 (s)	26.2	1.71 (s)	26.4
34	1.99 (<i>m</i>)	26.4	1.97 (<i>m</i>)	25.3
35	5.18 (br t, J = 7.0)	123.5	5.04 (br t, J = 6.9)	125.6
36	_	133.8	_	132.7
37	1.66 (s)	25.9	1.66 (s)	26.1
38	1.57 (s)	18.1	1.59 (s)	18.0

Table S4. ¹H NMR (500 MHz, $\delta_{\rm H}$, multi, (*J* in Hz) and ¹³C NMR (125 MHz) data of
compound **4** in acetone- d_6 .

	4		Hypersampso	one I
No.	(acetone- d_6	·)	(pyridine-d	5)
	$\delta_{_{ m H}}$ (ppm), J (Hz)	$\delta_{ m C}$ (ppm)	$\delta_{_{ m H}}$ (ppm), J (Hz)	$\delta_{ m C}$ (ppm)
1	_	81.3	_	81.9
2	_	206.1	_	205.8
3	_	70.8	_	76.6
4α	2.52 (<i>m</i>)		2.72 (<i>m</i>)	
10	2.32 (<i>m</i>) 29.2	29.2	2.56 (ddd, J = 14.1,	29.0
4β		9.4, 3.9)		
50			1.78	
50	1.82 (<i>m</i>)	42.2	(over load)	41.8
5β			2.00 (<i>m</i>)	
6	-	44.6	-	44.3
7	2.09 (<i>m</i>)	58.3	2.20 (<i>m</i>)	58.0
8α	2.32 (<i>m</i>)		2.25 (<i>m</i>)	
00	1.90(m)	29.3	1.55	28.9
δp	1.00(m)		(over load)	
9	2.40 (<i>m</i>)	43.9	2.14 (m)	43.5
10a	2.63 (<i>m</i>)	45.2	2.65 (dd, J = 13.9, 6.1)	45.1

10b	1.99 (<i>m</i>)		1.98 (<i>m</i>)	
11	_	69.3	_	69.1
12	_	206.4	_	206.1
13	_	51.2	_	51.9
14	_	206.1	_	205.9
15	_	193.4	_	193.7
16	_	134.7	_	135.6
17	7.18 (<i>d</i> , J = 8.0)	129.8	7.54 (br d, J = 7.8)	129.8
18	7.36 (<i>dd</i> , <i>J</i> = 16.0, 8.0)	128.7	7.37 (<i>m</i>)	128.5
19	7.47 $(t, J = 7.0)$	132.7	7.40 (<i>m</i>)	132.5
20	7.36 (dd, J = 16.0, 8.0)	128.7	7.37 (<i>m</i>)	128.5
21	7.18 (d, J = 8.0)	129.8	7.54 (br d, J = 7.8)	129.8
22	0.92(s)	22.0	0.95 (s)	21.8
23	1.03 (s)	30.3	0.92 (s)	29.9
24a	2.63 (<i>m</i>)	20.4	2.86 (dd, J = 14.5, 7.8)	20.4
24b	2.53 (<i>m</i>)	50.4	2.74 (<i>m</i>)	50.4
25	5.16 (<i>m</i>)	120.5	5.42 (t, J = 6.5)	120.2
26	_	138.2	_	138.1
27	2.07 (<i>m</i>)	40.6	2.07 (<i>m</i>)	40.3
28	1.68(s)	16.5	1.77 (s)	16.6
29	2.07 (<i>m</i>)	27.2	2.12 (<i>m</i>)	26.9
30	5.08 (d, J = 7.5)	124.9	5.17 (br t, J = 7.4)	124.6
31	_	132.0	_	131.4
32	1.64 (s)	25.4	1.66 (s)	25.8
33	1.58 (s)	17.7	1.56 (s)	17.7
34	1.44 (s)	25.4	1.58 (s)	25.7
35	1.48 (s)	22.8	1.62 (s)	22.8

Table S5. ¹H NMR (400 MHz, $\delta_{\rm H}$, multi, (J in Hz) and ¹³C NMR (100 MHz) spectral
data comparison of compound **5** in CDCl₃.

	5		Sampsonione D	
No.	(CDCl ₃)		(CDCl ₃)	
	$\delta_{_{ m H}}$ (ppm), J (Hz)	$\delta_{ m C}$ (ppm)	$\delta_{_{ m H}}$ (ppm), J (Hz)	$\delta_{ m C}$ (ppm)
1	—	80.8	_	80.8
2	_	203.8	_	203.9
3	_	73.9	_	73.9
4α	2.64 (1H, <i>m</i>)	2/ 2	2.63 (1H, <i>t</i> , <i>J</i> = 12.6)	24.4
4β	2.06 (1H, <i>m</i>)	54.5	2.08 (1H, dd , $J = 12.4$, 8.8)	54.4
5β	3.15 (1H, <i>m</i>)	54.9	3.12 (1H, dd, J = 12.0, 8.9)	54.9
6	_	44.2	_	44.3
7α	2.03 (1H, <i>m</i>)	57.1	2.03 (1H, <i>m</i>)	57.2

8α	2.29 (1H, <i>m</i>)	200	2.28 (1H, <i>m</i>)	20 0
8β	1.71 (1H, <i>m</i>)	28.8	1.71 (1H, <i>m</i>)	28.9
9α	2.10-2.12 (1H, <i>m</i>)	43.8	2.13 (1H, <i>m</i>)	43.9
10a	2.52 (1H, <i>m</i>)	12.5	2.52 (1H, <i>dd</i> , <i>J</i> = 14.0, 8.6)	126
10b	1.89 (1H, <i>m</i>)	42.5	1.88 (1H, $d, J = 14.1$)	42.0
11	_	68.8	-	68.9
12	_	204.7	-	204.7
13	_	50.6	-	50.7
14	_	206.2	-	206.2
15	_	192.4	_	192.4
16	_	134.8	_	134.8
17	7.12 (1H, <i>d</i> , <i>J</i> = 8.0)	128.8	7.11 (1H, <i>d</i> , <i>J</i> = 7.7)	128.8
18	7.26 (1H, <i>t</i> , <i>J</i> = 7.8)	127.9	7.26 (1H, <i>t</i> , <i>J</i> = 7.9)	127.9
19	7.39 (1H, <i>t</i> , <i>J</i> = 7.4)	131.9	7.39 (1H, <i>t</i> , <i>J</i> = 7.7)	131.3
20	7.26 (1H, t, J = 7.8)	127.9	7.26 (1H, <i>t</i> , <i>J</i> = 7.9)	127.9
21	7.12 (1H, $d, J = 8.0$)	128.8	7.11 (1H, <i>d</i> , <i>J</i> = 7.7)	128.8
22	_	145.2	-	145.2
23	4.91 (1H, <i>s</i>)	1117	4.91 (1H, <i>s</i>)	111.8
	4.84 (1H, <i>s</i>)	111./	4.84 (1H, <i>s</i>)	
24	1.80 (3H, <i>s</i>)	23.7	1.80 (3H, <i>s</i>)	23.8
25	0.87 (3H, s)	26.7	0.86 (3H, <i>s</i>)	26.7
26	0.93 (3H, s)	27.0	0.93 (3H, <i>s</i>)	27.0
27	2.16 (2H, <i>m</i>)	29.3	nd	29.3
28	5.11 (1H, t, J = 7.0)	118.9	5.11 (1H, t, J = 5.7)	118.9
29	_	138.2	-	138.3
30	1.95 (2H, <i>m</i>)	39.8	1.98 (2H, <i>m</i>)	39.5
31	1.66 (3H, <i>s</i>)	16.3	1.66 (3H, <i>s</i>)	16.3
32	2.03 (2H, <i>m</i>)	26.5	2.03 (2H, <i>m</i>)	26.5
33	5.05 (1H, t, J = 6.8)	124.0	5.05 (1H, t, J = 4.3)	124.0
34	_	131.2	-	131.3
35	1.65 (3H, s)	25.6	1.65 (3H, s)	25.6
36	1.57 (3H, s)	17.5	1.57 (3H, s)	17.6
37	1.41 (3H, <i>s</i>)	22.7	1.40 (3H, <i>s</i>)	22.7
38	1.46 (3H, s)	25.1	1.46 (3H, s)	25.2

Table S6. ¹H NMR (400 MHz, $\delta_{\rm H}$, multi, (*J* in Hz) and ¹³C NMR (100 MHz) data of
compound **6** in CDCl₃.

No.	6 (CDCl ₃)		Sampsonione H (CDCl ₃)		
	$\delta_{\rm H}$ (ppm), J (Hz)	$\delta_{ m C}$ (ppm)	$\delta_{\rm H}$ (ppm), J (Hz)	$\delta_{ m C}$ (ppm)	
1		79.7		81.1	
2	_	203.8	_	203.3	
3	_	75.1	_	74.8	
4α	2.37 (dd, J = 11.4, 7.6)	• • •	2.37 (dd, J = 13.7, 6.7)	• • •	
4β	2.43 (<i>m</i>)	28.2	2.43 (dd, J = 13.7, 7.0)	27.9	
5α	1.75 (<i>m</i>)	10.7	1.72 (<i>m</i>)	12.1	
5β	1.75 (<i>m</i>)	42.7	1.72 (<i>m</i>)	42.4	
6	_	44.5	_	44.2	
7	1.95 (<i>m</i>)	55.6	1.92 (<i>m</i>)	55.3	
8α	1.92 (<i>m</i>)	22.0	1.92 (<i>m</i>)	22.5	
8β	1.75 (<i>m</i>)	23.8	1.72 (<i>m</i>)	23.5	
9	2.10 (<i>m</i>)	42.5	2.07 (<i>m</i>)	42.2	
10a	2.50 (dd, J = 10.8, 7.2)	25.2	2.50 (dd, J = 14.4, 5.3)	25.0	
10b	2.21 (<i>d</i> , <i>J</i> = 16.4)	55.5	2.21 (d, J = 14.8)	55.0	
11	—	67.7	—	67.5	
12	-	207.5	_	204.8	
13	_	47.8	_	47.5	
14	—	203.8	_	203.3	
15	_	193.4	_	192.9	
16	_	135.2	_	134.8	
17	7.06 (d, J = 7.2)	128.7	7.10 (d, J = 8.0)	128.4	
18	7.26 (dd, J = 12.4, 8.8)	128.4	7.27 (dd, J = 7.9, 7.0)	128.1	
19	7.38(t, J = 7.6)	132.3	7.39(t, J = 7.0)	132.1	
20	7.26 (dd, J = 12.4, 8.8)	128.4	7.27 (dd, J = 7.9, 7.0)	128.1	
21	7.06 (d, J = 7.2)	128.7	7.10 (d, J = 8.0)	128.4	
22	1.01 (s)	28.6	1.03 (s)	28.3	
23	0.94 (s)	20.7	0.95 (s)	20.5	
24a	2.61(m)	29.1	2.62(m)	28.9	
246	2.61(m)	110.2	2.62(m)	110.0	
25	5.30(t, J = 8.0)	119.2	5.30(t, J = 7.4)	118.9	
20	- 2.07 (m)	139.1	- 2.0((m)	138.8	
$\frac{27}{28}$	$\frac{2.07}{m}$	40.2	2.00(m)	39.9	
$\frac{20}{20}$	1.00(s) 2.07 (m)	10.3	$\frac{1.07(s)}{2.07(m)}$	26.5	
30	$\frac{2.07}{(m)}$	<u> </u>	5.07 (m)	174.1	
31		131.8		131 3	
32	1 66 (s)	25.9	1 67 (s)	25.7	
33	1.59 (s)	17.8	1.58 (s)	17.6	
$\frac{33}{34}$	1.42 (s)	25.2	1.42 (s)	25.2	
35	1.39 (s)	22.6	1.39 (s)	22.5	

	7		β-Mangostin		
No.	(acetone- d_6)		(acetone- d_6)		
	$\delta_{ m H}$ (ppm) J (Hz)	$\delta_{\rm C}$ (ppm)	$\delta_{ m H}$ (ppm) J (Hz)	$\delta_{\rm C}$ (ppm)	
1	_	160.7	_	159.7	
2	_	111.9	_	111.4	
3	_	164.6	_	163.5	
4	6.52 (1H, s)	89.9	6.33 (1H, <i>s</i>)	88.8	
4a	_	155.6	_	155.6	
5	6.87 (1H, s)	102.7	6.82 (1H, <i>s</i>)	101.5	
6	—	156.3	-	154.4	
7	_	144.6	_	142.5	
8	_	138.1	_	137.0	
8a	_	112.8	_	112.3	
9	_	182.9	_	181.9	
9a	_	103.7	_	103.7	
10a	_	157.8	_	155.2	
11	3.32 (2H, d, J = 6.6)	21.9	3.36 (2H, d, J = 6.8)	21.3	
12	5.21 (1H, t, J = 6.6)	123.3	5.29 (1H, t, J = 6.8)	122.3	
13	—	132.0	-	132.0	
14	1.63 (3H, <i>s</i>)	25.9	1.85 (3H, <i>s</i>)	25.8	
15	1.77 (3H, s)	17.8	1.82 (3H, <i>s</i>)	25.8	
16	4.13 (2H, <i>d</i> , <i>J</i> = 6.6)	26.9	4.11 (2H, <i>d</i> , <i>J</i> = 6.8)	26.5	
17	5.27 (1H, t, J = 6.6)	124.7	5.25 (1H, t, J = 6.8)	123.2	
18	_	131.5	_	131.7	
19	1.65 (3H, <i>s</i>)	25.9	1.72 (3H, <i>s</i>)	18.2	
20	1.83 (3H, <i>s</i>)	18.3	1.71 (3H, <i>s</i>)	17.7	
1-OH	13.67 (1H, <i>s</i>)	_	13.44 (1H, <i>s</i>)	_	
6-OH	_	_	6.43 (1H, <i>s</i>)	_	
3-OMe	3.97 (3H, s)	56.6	3.82 (3H, <i>s</i>)	55.8	
7-OMe	3.80 (3H, <i>s</i>)	61.3	3.92 (3H, <i>s</i>)	62.0	

Table S7. ¹H NMR (500 MHz, $\delta_{\rm H}$, multi, (*J* in Hz) and ¹³C NMR (125 MHz) data of
compound 7 in acetone- d_6 .

Table S8. ¹H NMR (500 MHz, δ_{H} , multi, (*J* in Hz) and ¹³C NMR (125 MHz) data of
compound **8** in CDCl₃.

	8		α-Mangostin	
No.	No. (CDCl ₃)		$(CDCl_3)$	
	$\delta_{ m H}$ (ppm) J (Hz)	$\delta_{\rm C}$ (ppm)	$\delta_{ m H}$ (ppm) J (Hz)	$\delta_{\rm C}$ (ppm)
1	_	160.7	_	160.6
2	_	108.7	_	108.5

	8		α-Mangostin	
No.	(CDCl ₃)		(CDCl ₃)	
	$\delta_{ m H}(m ppm)J(m Hz)$	$\delta_{\rm C}(\rm ppm)$	$\delta_{ m H}(m ppm)J(m Hz)$	δ _C (ppm)
3	-	161.8	-	161.6
4	6.30 (1H, <i>s</i>)	93.5	6.36 (1H, <i>s</i>)	93.3
4a	—	154.7	_	154.5
5	6.83 (1H, <i>s</i>)	103.7	6.82 (1H, <i>s</i>)	102.8
6	_	155.9	_	155.8
7	_	142.7	_	142.5
8	_	137.2	_	137.0
8a	_	112.3	_	112.2
9	_	182.1	_	182.0
9a	_	101.7	_	101.6
10a	_	155.2	_	155.3
11	3.44 (2H, d, J = 7)	21.6	3.45 (2H, d, J = 6.6)	21.4
12	5.28 (1H, t, J = 7)	121.6	5.29 (1H, t, J = 6.6)	121.5
13	—	132.3	_	131.1
14	1.84 (3H, <i>s</i>)	18.4	1.84 (3H, <i>s</i>)	18.2
15	1.83 (3H, <i>s</i>)	26.0	1.83 (3H, <i>s</i>)	25.8
16	4.08 (2H, d, J = 6.5)	26.7	4.09 (2H, d, J = 6.6)	26.6
17	5.26 (1H, <i>t</i> , <i>J</i> = 6.5)	123.3	5.26 (1H, <i>t</i> , <i>J</i> = 6.6)	123.1
18	_	135.8	-	135.6
19	1.77 (3H, <i>s</i>)	18.1	1.77 (3H, <i>s</i>)	17.9
20	1.69 (3H, s)	26.0	1.69 (3H, s)	25.8
1-OH	_	_	13.78 (1H, s)	_
$7-OCH_3$	3.80 (3H, s) 62		3.79 (3H, s)	62.0

Table S9. ¹H NMR (500 MHz, $\delta_{\rm H}$, multi, (*J* in Hz) and ¹³C NMR (125 MHz) data of
compound **9** in acetone- d_6 .

No	9 (acetone- d_{δ})		9-Hydroxycalabaxanthone (CDCl ₃)	
110.	$\delta_{ m H}(m ppm)J(m Hz)$	δ _C (ppm)	$\delta_{\! m H}(m ppm)J(m Hz)$	δ _C (ppm)
1	_	158.8	_	157.8
2	_	105.2	_	104.4
3	_	160.7	_	nd
4	6.26 (1H, <i>s</i>)	94.6	6.24 (1H, <i>s</i>)	94.0
4a	_	157.2	-	156.1
5	6.87 (1H, s)	102.9	6.83 (1H, s)	101.6
6	_	158.8	_	154.5

	9		9-Hydroxycalabaxanthone	
No.	$(acetone-d_6)$		(CDCl ₃)	
	$\delta_{ m H}(m ppm)J(m Hz)$	<i>б</i> _С (ррт)	$\delta_{ m H}$ (ppm) J (Hz)	<i>б</i> _С (ppm)
7	_	144.8	_	142.7
8	_	138.2	_	136.9
8a	_	111.8	_	112.1
9	_	183.1	_	181.8
9a	_	104.5	_	103.6
10	_	_	_	_
10a	_	157.2	_	155.6
11	6.68 (1H, $d, J = 10.0$)	116.0	6.73 (1H, <i>d</i> , <i>J</i> = 9.9)	115.6
12	5.72 (1H, $d, J = 10.0$)	125.5	5.57 (1H, <i>d</i> , <i>J</i> = 9.9)	126.9
13	_	78.8	_	77.8
14	1.46 (3H, <i>s</i>)	28.5	1.46 (3H, <i>s</i>)	28.3
15	1.46 (3H, <i>s</i>)	28.5	1.46 (3H, <i>s</i>)	28.3
16	4.12 (2H, $d, J = 6.5$)	26.8	4.09 (2H, <i>d</i> , <i>J</i> = 6.6)	26.5
17	5.26 (1H, <i>t</i> , <i>J</i> = 6.5)	124.6	5.27 (1H, <i>t</i> , <i>J</i> = 6.6)	123.1
18	_	131.6	-	131.8
19	1.82 (3H, <i>s</i>)	18.3	1.83 (3H, <i>s</i>)	18.1
20	1.65 (3H, <i>s</i>)	25.9	1.70 (3H, <i>s</i>)	25.6
1-OH	13.93 (1H, <i>s</i>)	_	13.70 (1H, <i>s</i>)	_
6-OH	_	_	-	_
7-0CH ₃	3.80 (3H, s)	61.3	3.81 (3H, s)	61.8

Table S10. ¹H NMR (500 MHz, $\delta_{\rm H}$, multi, (J in Hz) and ¹³C NMR (125 MHz) data of
compound **10** in acetone- d_6 .

No	10 (acetone- d_6)		Fuscaxanthone A (acetone- d_6)	
INO.	$\delta_{\rm H}$ (ppm) J (Hz)	δ _C (ppm)	$\delta_{\rm H}$ (ppm) J (Hz)	δ _C (ppm)
1	_	158.9	_	157.9
2	_	104.7	_	104.5
3	_	160.7	_	159.8
4	6.26 (1H, <i>s</i>)	94.7	6.24 (1H, <i>s</i>)	94.1
4a	_	157.2	_	156.2
5	6.87 (1H, <i>s</i>)	102.9	6.83 (1H, <i>s</i>)	101.6
6	_	156.3	-	154.5
7	_	142.1	_	142.7
8	_	138.3	_	137.0
8a	_	112.0	_	112.2

	10		Fuscaxanthone A		
No.	$(acetone-d_6)$		$(acetone-d_6)$		
100	$\delta_{ m H}$ (ppm) J (Hz)	<i>б</i> _С (ррт)	$\delta_{ m H}$ (ppm) J (Hz)	<i>б</i> _С (ppm)	
9	_	182.5	_	181.9	
9a	_	103.6	_	103.7	
10	_	_	_	_	
10a	_	157.8	_	155.7	
11	6.68 (1H, $d, J = 10.0$)	116.0	6.72 (1H, <i>d</i> , <i>J</i> = 10.0)	115.7	
12	5.72 (1H, $d, J = 10.0$)	128.5	5.56 (1H, <i>d</i> , <i>J</i> = 10.0)	127.1	
13	_	78.3	_	77.9	
14	1.46 (3H, <i>s</i>)	28.5	1.46 (3H, <i>s</i>)	28.3	
15	1.46 (3H, <i>s</i>)	28.5	1.46 (3H, <i>s</i>)	28.3	
16	4.13 (2H, $d, J = 6.5$)	26.8	4.09 (2H, <i>d</i> , <i>J</i> = 6.5)	26.5	
17	5.28 (1H, <i>m</i>)	124.7	5.26 (1H, <i>m</i>)	123.2	
18	_	135.3	_	135.6	
19	1.98 (2H, <i>m</i>)	40.5	2.01 (2H, <i>m</i>)	39.7	
20	2.05 (2H, <i>m</i>)	27.3	2.04 (2H, <i>m</i>)	26.4	
21	5.04 (1H, <i>m</i>)	125.2	5.02 (1H, <i>m</i>)	124.2	
22	_	131.6	-	131.2	
23	1.52 (3H, <i>s</i>)	17.8	1.54 (3H, <i>s</i>)	17.6	
24	1.84 (3H, <i>s</i>)	16.5	1.82 (3H, <i>s</i>)	16.5	
25	1.56 (3H, s)	25.7	1.60 (3H, <i>s</i>)	25.6	
1-OH	13.93 (1H, s)	_	13.55 (1H, s)	_	
6-OH	9.71 (1H, s)	_	6.15 (1H, <i>s</i>)	_	
7-OCH ₃	3.80 (3H, s)	61.4	3.73 (3H, <i>s</i>)	62.0	

Table S11. ¹H NMR (500 MHz, $\delta_{\rm H}$, multi, (J in Hz) and ¹³C NMR (125 MHz) spectral
data comparison of compound **11** in acetone- d_6 .

No.	$11 \\ (acetone-d_6)$		$\begin{array}{c} \textbf{11-hydroxy-1-isomangostin} \\ (acetone-d_6) \end{array}$	
	$\delta_{ m H}$ (ppm) J (Hz)	δ _C (ppm)	$\delta_{ m H}$ (ppm) J (Hz)	δ _C (ppm)
1	_	156.0	_	155.9
2	_	105.5	_	105.0
3	_	161.2	_	161.0
4	6.39 (1H, <i>s</i>)	94.1	6.40 (1H, <i>s</i>)	94.2
4a	_	157.6	_	157.6
4b	_	154.9	_	154.9
5	6.71 (1H, <i>s</i>)	102.1	6.72 (1H, <i>s</i>)	102.1
6	_	155.6	_	155.8

$\begin{array}{ c c c c }\hline 11 \\ \hline No. & (acetone-d_6) \\\hline \end{array}$			11-hydroxy-1-isomango	ostin	
			(acetone- d_6)		
	$\delta_{ m H}$ (ppm) J (Hz)	$\delta_{\rm C}(\rm ppm)$	$\delta_{ m H}$ (ppm) J (Hz)	$\delta_{\rm C}(\rm ppm)$	
7	_	144.4	_	144.3	
8	_	137.7	_	137.6	
8a	_	115.4	_	115.1	
9	_	176.1	_	176.3	
9a	_	107.9	_	107.7	
10	2.57 (1H, dd, J = 16.8, 7.8)	27.1	2.56 (1H, dd, J = 16.8, 7.8)	27.1	
10	2.92 (1H, <i>dd</i> , <i>J</i> = 16.8, 5.8)	27.1	2.94 (1H, <i>dd</i> , <i>J</i> = 16.8, 5.7)	2/.1	
11	3.81 (1H, dd, J = 8, 5.5)	69.1	3.82 (1H, dd, J = 7.8, 5.7)	69.0	
12	—	78.6	_	78.5	
13	1.30 (3H, <i>s</i>)	20.6	1.30 (3H, <i>s</i>)	20.6	
14	1.43 (3H, <i>s</i>)	26.0	1.43 (3H, <i>s</i>)	26.0	
15	4.09 (2H, t, J = 6)	26.6	4.09 (2H, d, J = 6.8)	26.6	
16	5.31 (1H, $t, J = 6.8$)	125.6	5.31 (1H, br t, J = 6.8)	125.8	
17	_	130.2	_	130.5	
18	1.82 (3H, <i>s</i>)	26.1	1.81 (3H, <i>br s</i>)	26.1	
19	1.65 (3H, <i>s</i>)	18.3	1.64 (3H, <i>br s</i>)	18.3	
7-OMe	3.77 (3H, <i>s</i>)	61.2	3.77 (3H, <i>s</i>)	61.0	

Table S12. Alpha-glucosidase inhibition (IC₅₀) by extracts of studied plant

Bio-source		IC ₅₀
Extract	Crude MeOH	$27.7\pm0.5~\mu g/mL$
	Extract H	>200 µg/mL
	Extract EA	$66.0\pm2.6~\mu\text{g/mL}$
Fraction	Fractions EA1-EA5	>200 µg/mL
	Fraction EA6	$12.0\pm0.4~\mu\text{g/mL}$
	Fractions EA7-EA11	>200 µg/mL
	Fraction EA12	$60.9\pm1.2~\mu\text{g/mL}$
	Fraction EA13	>200 µg/mL
	Fraction EA14	>200 µg/mL
	Fraction EA15	$66.9\pm3.7~\mu g/mL$
	Fraction EA16	$155.9\pm4.4~\mu\text{g/mL}$

Figure S1A. The HRESIMS spectrum of 1.

Figure S1B. The IR spectrum of 1.

Figure S1C. The ¹H NMR spectrum of 1 in acetone- d_6 .

Figure S1E. The HSQC spectrum of 1 in acetone- d_6 .

Figure S1F. The HMBC spectrum of 1 in acetone- d_6 .

Figure S1G. The NOESY spectrum of 1 in acetone- d_6 .

Figure S1H. The ¹H NMR spectrum of 1 in methanol- d_4 .

Figure S2B. The ¹³C NMR spectrum of 2 in acetone- d_6 .

Figure S2C. The HMBC spectrum of 2 in acetone- d_6 .

Figure S2D. The NOESY spectrum of 2 in acetone- d_6 .

Figure S3C. The ¹³C NMR spectrum of 3 in acetone- d_6 .

Figure S4A. The ¹H NMR spectrum of 4 in acetone- d_6 .

Figure S4B. The ¹³C NMR spectrum of 4 in acetone- d_6 .

Figure S4D. The HSQC spectrum of 4 in acetone- d_6 .

Figure S4E. The HMBC spectrum of 4 in acetone- d_6 .

Figure S4F. The NOESY spectrum of 4 in acetone- d_6 .

Figure S5C. The ¹³C NMR spectrum of 5 in CDCl₃.

Figure S5D. The ¹H NMR spectrum of **5** in acetone- d_6 .

Figure S5E. The ¹³C NMR spectrum of 5 in acetone- d_6 .

Figure S5F. The COSY spectrum of 5 in acetone- d_6 .

Figure S5H. The HMBC spectrum of 5 in acetone- d_6 .

Figure S6A. The ¹H NMR spectrum of 6 in CDCl₃.

Figure S6B. The ¹³C NMR spectrum of 6 in CDCl₃.

Figure S6C. The COSY spectrum of 6 in CDCl₃.

Figure S6D. The HSQC spectrum of 6 in CDCl₃.

Figure S6E. The NOESY spectrum of 6 in CDCl₃.

Figure S7B. The ¹³C NMR spectrum of 7 in acetone- d_6 .

Figure S7C. The HMBC spectrum of 7 in acetone- d_6 .

Figure S8B. The ¹³C NMR spectrum of 8 in CDCl₃.

Figure S9B. The ¹H NMR spectrum of 9 in acetone- d_6 .

Figure S9C. The JMOD spectrum of 9 in acetone- d_6 .

Figure S9D. The HMBC spectrum of 9 in acetone- d_6 .

Figure S10A. The HRESIMS spectrum of 10.

Figure S10C. The JMOD spectrum of 10 in acetone- d_6 .

Figure S10D. The HMBC spectrum of 10 in acetone- d_6 .

Figure S11C. The ¹³C NMR spectrum of 11 in acetone- d_6 .

Figure S12. The chemical shifts of the characteristic methyl group of benzoylphloroglucinols 1-3, planchoniones A and B, guttiferones Q and R.

Refs:

X.-T. Yan, Z. An, Y. Huangfu, et al. Polycyclic polyprenylated acylphloroglucinol and phenolic metabolites from the aerial parts of Hypericum elatoides and their neuroprotective and antineuroinflammatory activities. *Phytochemistry* 2019, 159, 65–74.

H.D. Nguyen, B.T.D. Trinh, L.-H.D. Nguyen. Guttiferones Q-S, cytotoxic polyisoprenylated benzophenones from the pericarp of Garcinia cochinchinensis. *Phytochemistry Letters* 2011, 4 (2), 129–133.

Figure S13. The chemical shifts of the characteristic methyl group of benzoylphloroglucinols from Vietnamese *G. schomburgkiana* fruits.

- D.H. Le, K. Nishimura, Y. Takenaka, Y. Mizushina, T. Tanahashi. Polyprenylated Benzoylphloroglucinols with DNA Polymerase Inhibitory Activity from the Fruits of *Garcinia schomburgkiana*. J. Nat. Prod. 2016, 79 (7), 1798–1807.
- H.T. Nguyen, T.-T. Nguyen, T.-H. Duong, et al. α-Glucosidase Inhibitory and Antimicrobial Benzoylphloroglucinols from Garcinia schomburgakiana Fruits: In Vitro and In Silico Studies. *Molecules* 2022, 27 (8), 2574.

Figure S14. one 2D diagram indicated the significant ligand interactions between pose 82/ compound 3 and residual amino acid on 4J5T enzyme.

Figure S15. One ligand map indicated the secondary interactions between pose 82/compound 3 and 4J5T enzyme.

Figure S16. One diagram showed the significant ligand interactions between pose 332/compound 4 and 4J5T enzyme.

Figure S17. One ligand map showed the secondary interactions between pose 332/compound 4 and 4J5T enzyme.

Figure S18. One diagram showed the significant ligand interactions between pose 160/compound 5 and 4J5T enzyme.

Figure S19. One ligand map showed the secondary interactions between pose 160/compound 5 and 4J5T enzyme.

Figure S20. One diagram showed the significant ligand interactions between pose 489/compound 7 and 4J5T enzyme.

Figure S21. One ligand map showed the secondary interactions between pose 489/compound 7 and 4J5T enzyme.