Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Formation of Charge-Transfer Complexes in Ionic Crystals Composed of 1,3-Bis(dicyanomethylidene)indan Anion and Viologens Bearing Alkyl Chains

Erika Saito, Ryohei Yamakado*, Taichi Yasuhara, Hiroto Yamaguchi, Shuji Okada and Tsukasa Yoshida*

Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa 992-8510, Japan, Fax: +81 238 26 3741; Tel: +81 238 26 3088; E-mail: yamakado@yz.yamagatau.ac.jp

Table of Contents	
1. Synthesic procedures and spectroscopic data	S2
Fig. S1–S12 ¹ H and ¹³ C NMR spectra	S4
2. X-ray crystallographic data	S16
Table S1 Crystallographic details	S17
Fig. S13–S19 Packing diagrams of crystal structures	S18
Fig. S20 Stacking structures of crystal structures	S20
3. Optical properties	S21
Fig. S21 UV/vis absorption and fluorescence spectra in MeOH	S21
Fig. S22 Diffuse reflectance spectra	S22
4. Thermal properties	S23
Fig. S23 DSC curves	S23

1. Synthetic procedures and spectroscopic data

General procedures. Starting materials were purchased from Kanto Chemical, TCI, and Sigma-Aldrich, and used without further purification unless otherwise stated. ¹H and ¹³C nuclear magnetic resonance (NMR) spectroscopies were investigated on JEOL ECX-500 500 MHz and ECZ-600 600 MHz spectrometers using DMSO- d_6 (δ 2.50 and 39.5 for ¹H and ¹³C NMR, respectively) as the internal standards. Ultraviolet (UV)-visible (Vis)-near infrared (NIR) diffuse reflectance spectra were recorded on a JASCO V-750 spectrometer using a 10 mm quartz cell. UV–vis–NIR diffuse reflectance spectra were recorded on a JASCO V-670 spectrometer using powdered samples. Samples were supported on filter paper, which was also used to provide the background reference.

Typical procedure of the synthesis of 1,1'-dialkyl-4,4'-bipyridinium dihalide (Cn²⁺-2X⁻). 4,4'-Bipyridine (1.56 g, 10 mmol) was added to 3 equivalents of alkylhalide (30 mmol) in acetonitrile (20 mL). The mixture was heated at 65 °C to complete dissolution and stirred 48 h. The precipitate in the reaction mixture was filtered and washed with THF. The compound was recrystallized from MeOH.

1,1'-Dipropyl-4,4'-bipyridinium dibromide (C3²⁺-2Br⁻⁻). Yellow powder, Yield: 62%, M.p.: 287°C. ¹H NMR (600 MHz, DMSO- d_6 , δ): 0.89 (6H, t, J = 7.2 Hz), 1.99 (4H, td, J = 7.2 Hz), 4.75 (4H, t, J = 7.2 Hz), 8.88 (4H, d, J = 6.9 Hz), 9.52 (4H, d, J = 6.9 Hz). ¹³C NMR (126 MHz, DMSO- d_6 , δ): 10.11, 24.11, 61.98, 126.60, 145.64, 148.56.

1,1'-Dibutyl-4,4'-bipyridinium dibromide (C4²⁺-2Br⁻⁻). Yellow powder, Yield: 61%, M.p.: 284°C. ¹H NMR (400 MHz, DMSO- d_6 , δ): 0.94 (6H, t, J = 7.4 Hz), 1.33 (4H, td, J = 7.4 Hz), 1.93–2.00 (4H, m), 4.70 (4H, t, J = 7.2 Hz), 8.79 (4H, d, J = 6.7 Hz), 9.40 (4H, d, J = 6.7 Hz). ¹³C NMR (126 MHz, DMSO- d_6 , δ): 13.23, 18.70, 32.60, 60.65, 126.63, 145.67, 148.64.

1,1'-Dipentyl-4,4'-bipyridinium dibromide ($C5^{2+}-2Br^{-}$). Yellow powder, Yield: 62%, M.p.: 274°C. ¹H NMR (500 MHz, DMSO- d_6 , δ): 0.88 (6H, t, J = 6.8 Hz), 1.29—1.37 (8H, m), 1.97—2.02 (4H, m), 4.74 (4H, t, J = 7.8 Hz), 8.82 (4H, d, J = 6.5 Hz), 9.45 (4H, d, J = 6.5 Hz). ¹³C NMR (126 MHz, DMSO- d_6 , δ): 13.83, 21.65, 27.57, 30.54, 60.84, 126.72, 145.80, 148.64.

1,1'-Dihexyl-4,4'-bipyridinium diiodide (C6²⁺-2I[—]). Orange red powder, Yield: 60%, M.p.: 279°C. ¹H NMR (500 MHz, DMSO- d_6 , δ): 0.84—0.89 (6H, m), 1.27—1.37 (12H, m), 1.93—2.04 (4H, m), 4.698 (4H, t, J = 7.5 Hz), 8.77 (4H, d, J = 6.8 Hz), 9.37 (4H, d, J = 6.8 Hz). ¹³C NMR (126 MHz, DMSO- d_6 , δ): 13.73, 21.76, 25.00, 30.48, 60.94, 126.62, 145.62, 148.64.

Typical procedure of the synthesis of 1,1'-dialkyl-4,4'-bipyridinium 1,3bis(dicyanomethilidene)indan (Cn²⁺-2CMI⁻). To an aqueous solution (1 mM) of 1,3bis(dicyanomethylidene)indan (60.55 mg, 0.25 mmol), 2.51 mM NaOH aq (pH = 12.4) was added dropwise to be basic condition (pH = 9.6–10.0). To this solution, aqueous solution (125 mL) of 1,1 dipropyl—4,4'-bipridinium dihalide (0.125 mmol) was added, and the mixture was stirred for 24 h at r.t,. After removing the solvents, the residue was recrystallized from ethanol to afford Cn²⁺-2CMI⁻.

1,1'-Dimetyl-4,4'-bipridinium 1,3-bis(dicyanomethilidene)indan (C1²⁺-2CMI⁻). Deep orange purple powder, Yield 42%, M.p.: 260 °C (decomposition), ¹H NMR (400 MHz, DMSO- d_6 , δ): 4.43 (6H, s), 5.70 (2H, s), 7.41-7.44 (4H, m), 7.88-7.93 (4H, m), 8.74 (4H, d, J = 6.7 Hz), 9.27 (4H, d, J = 6.7 Hz). ¹³C NMR (126 MHz, DMSO- d_6 , δ): 47.91, 50.26, 102.70, 117.69, 117.80, 121.44, 125.92, 130.01, 137.78, 146.51, 148.08, 158.05.

1,1'-Dietyl-4,4'-bipridinium 1,3-bis(dicyanomethilidene)indan (C2²⁺-2CMI⁻). Dark green powder, Yield 42%, M.p.: 243 °C, ¹H NMR (500 MHz, DMSO- d_6 , δ): 1.61 (6H, t, J = 7.0 Hz), 4.72 (4H, q, J = 7.3 Hz), 5.70 (2H, s), 7.41-7.43 (4H, m), 7.89-7.92 (4H, m), 8.75 (4H, d, J = 6.3 Hz), 9.37 (4H, d, J = 6.3 Hz). ¹³C NMR (126 MHz, DMSO- d_6 , δ): 16.36, 50.40, 56.61, 102.76, 117.85, 117.94, 121.60, 126.50, 130.18, 137.82, 145.62, 148.47, 158.16.

1,1'-Dipropyl-4,4'-bipyridinium 1,3-bis(dicyanomethylidene)indan (C3²⁺-2CMI⁻). Deep purple powder, Yield 40%, M.p.: 242 °C, ¹H NMR (500 MHz, DMSO- d_6 , δ): 0.94 (6H, t, J = 7.5 Hz), 1.99-2.04 (4H, m) 4.66 (4H, t, J = 7.0 Hz), 5.70 (2H, s), 7.41-7.42 (4H, m), 7.90-7.91 (4H, m), 8.76 (4H,

d, J = 7.0 Hz), 9.35 (4H, d, J = 7.0 Hz). ¹³C NMR (126 MHz, DMSO- d_6 , δ): 10.08, 24.02, 50.24, 62.20, 102.65, 117.67, 117.79, 121.43, 126.47, 129.95, 137.77, 145.60, 148.57, 158.04.

1,1'-Dibutyl-4,4'-bipiridinium 1,3-bis(dicyanomethylidene)indan (C4²⁺-2CMI⁻). Deep purple powder, Yield 44%, M.p.: 236 °C, ¹H NMR (500 MHz, DMSO- d_6 , δ): 0.94 (6H, t, J = 7.2 Hz), 1.30-1.36 (4H, m), 1.92-1.98 (4H, m), 4.68 (4H, t, J = 7.6 Hz), 5.70 (2H, s), 7.42-7.44 (4H, m), 7.90-7.92 (4H, m), 8.77 (4H, d, J = 7.0 Hz), 9.37 (4H, d, J = 7.0 Hz). ¹³C NMR (100 MHz, DMSO- d_6 , δ): 13.15, 18.66, 32.52, 50.25, 60.66, 102.64, 117.68, 117.78, 121.43, 126.49, 129.95, 137.78, 145.61, 148.53, 158.03.

1,1'-Dipentyl-4,4'-bipridinium 1,3-bis(dicyanomethilidene)indan (C5²⁺-2CMI⁻). Deep purple powder, Yield 40%, M.p.: 228 °C, ¹H NMR (400 MHz, DMSO- d_6 , δ): 0.89 (6H, t, J = 7.0 Hz), 1.25-1.36 (8H, m), 1.93-2.03 (4H, m), 4.68 (4H, t, J = 7.6 Hz), 5.71 (2H, s), 7.40-7.44 (4H, m), 7.88-7.94 (4H, m), 8.77 (4H, d, J = 7.2 Hz), 9.37 (4H, d, 7.2 Hz). ¹³C NMR (126 MHz, DMSO- d_6 , δ): 13.78, 21.66, 27.63, 30.55, 50.47, 61.00, 102.82, 117.89, 117.98, 121.61, 126.50, 130.15, 137.86, 145.76, 148.51, 158.16.

1,1'-Dihexyl-4,4'-bipridinium 1,3-bis(dicyanomethilidene)indan (C6²⁺-2CMI⁻). Dark purple powder, Yield 39%, M.p.: 184 °C, ¹H NMR (400 MHz, DMSO- d_6 , δ): 0.87 (6H, t, J = 7.0 Hz), 1.27-1.35 (12H, m), 1.93-2.02 (4H, m), 4.68 (4H, t, J = 7.2 Hz), 5.71 (2H, s), 7.39-7.45 (4H, m), 7.88-7.93 (4H, m), 8.76 (4H, d, J = 6.8 Hz), 9.37 (4H, d, J = 6.8 Hz). ¹³C NMR (126 MHz, DMSO- d_6 , δ): 13.74, 21.82, 25.29, 27.92, 30.89, 50.27, 60.92, 102.64, 117.70, 117.81, 121.45, 126.43, 130.03, 137.80, 145.60, 148.53, 158.07.

1,1'-Diheptyl-4,4'-bipridinium 1,3-bis(dicyanomethilidene)indan (C7²⁺-22CMI⁻). Black powder, Yield 40%, M.p.: 153 °C, ¹H NMR (500 MHz, DMSO- d_6 , δ): 0.86 (6H, t, J = 7.0 Hz), 1.21-1.36 (16H, m), 1.96-2.08 (4H, m), 4.67 (4H, t, J = 7.5 Hz), 5.70 (2H, s), 7.41-7.43 (4H, m), 7.89-7.91 (4H, m), 8.77 (4H, d, J = 6.3 Hz), 9.37 (4H, d, J = 6.3 Hz). ¹³C NMR (126 MHz, DMSO- d_6 , δ): 13.93, 21.98, 25.40, 28.08, 30.77, 31.03, 50.39, 60.94, 102.74, 117.84, 117.93, 121.59, 126.58, 130.17, 137.83, 145.74, 148.57, 158.16.

1,1'-Dioctyl-4,4'-bipridinium 1,3-bis(dicyanomethilidene)indan (C8²⁺-2CMI⁻). Dark purple powder, Yield 39%, M.p.: 132 °C, ¹H NMR (500 MHz, DMSO- d_6 , δ): 0.85 (6H, t, J = 7.0 Hz), 1.20-1.39 (22H, m), 1.92-2.02 (4H, m), 4.67 (4H, t, J = 7.3 Hz), 5.70 (2H, s), 7.39-7.44 (4H, m), 7.88-7.93 (4H, m), 8.75 (4H, d, J = 6.5 Hz), 9.35 (4H, d, J = 6.5 Hz). ¹³C NMR (126 MHz, DMSO- d_6 , δ): 13.75, 21.89, 25.33, 28.22, 28.32, 30.61, 31.00, 50.26, 60.91, 102.67, 117.68, 117.79, 121.43, 126.46, 129.94, 137.78, 145.59, 148.49, 158.04.

Fig. S1 ¹H (top) and ¹³C NMR (bottom) spectra of $C3^{2+}-2Br^{-}$ in DMSO- d_6 .

Fig. S2 ¹H (top) and ¹³C NMR (bottom) spectra of C4²⁺-2Br⁻ in DMSO- d_6 .

Fig. S3 ¹H (top) and ¹³C NMR (bottom) spectra of $C5^{2+}-2Br^{-}$ in DMSO- d_6 .

Fig. S4 ¹H (top) and ¹³C NMR (bottom) spectra of C6²⁺-2I⁻ in DMSO- d_6 .

Fig. S5 ¹H (top) and ¹³C NMR (bottom) spectra of C1²⁺-2CMI⁻ in DMSO-*d*₆.

Fig. S6 ¹H (top) and ¹³C NMR (bottom) spectra of C2²⁺-2CMI⁻ in DMSO- d_6 .

Fig. S7 ¹H (top) and ¹³C NMR (bottom) spectra of C3²⁺-2CMI⁻ in DMSO- d_6 .

Fig. S8 ¹H (top) and ¹³C NMR (bottom) spectra of C4²⁺-2CMI⁻ in DMSO-*d*₆.

Fig. S9 ¹H (top) and ¹³C NMR (bottom) spectra of C5²⁺-2CMI⁻ in DMSO- d_6 .

Fig. S10 ¹H (top) and ¹³C NMR (bottom) spectra of C6²⁺-2CMI⁻ in DMSO- d_6 .

Fig. S11 ¹H (top) and ¹³C NMR (bottom) spectra of C7²⁺-2CMI⁻ in DMSO- d_6 .

Fig. S12 ¹H (top) and ¹³C NMR (bottom) spectra of C8²⁺-2CMI⁻ in DMSO- d_6 .

2. X-ray crystallographic data

X-ray Crystallography. Crystallographic data for the ion pairs of C1²⁺-2CMI⁻, C2²⁺-2CMI⁻, C3²⁺-2CMI⁻, C4²⁺-2CMI⁻, C5²⁺-2CMI⁻, and C6²⁺-2CMI⁻ are summarized in Table 1. Single crystals of C1²⁺-2CMI⁻ and C2²⁺-2CMI⁻ were obtained by the slow evaporation of ethanol solutions. Single crystals of C3²⁺-2CMI⁻, C4²⁺-2CMI⁻, C5²⁺-2CMI⁻ and C6²⁺-2CMI⁻ were obtained by the vapor diffusion of toluene into the acetone solutions. A single crystal of C8²⁺-2CMI⁻ was obtained by the vapor diffusion of ethyl acetate into the iso-propanol with small quantity of acetone solution. The data for C1²⁺-2CMI⁻, C2²⁺-2CMI⁻, C3²⁺-2CMI⁻, C4²⁺-2CMI⁻, C5²⁺-2CMI⁻, and C6²⁺-2CMI⁻ were collected at range of 93 to 150 K on a Rigaku Saturn 724 diffuse reflectance spectra with graphite monochromate Mo-K α radiation ($\lambda = 0.71073$ Å). The data for C8²⁺-2CMI⁻ was collected at 90 K on DECTRIS EIGAR monochromated synchrotron radiation ($\lambda = 0.811069$ Å) at BL02B1 (SPring-8). The non-hydrogen atoms were refined anisotropically. In this paper, the π -plane distances out of parallel orientations have been defined as the average lengths between non-hydrogen atoms of π units and the mean planes of their neighboring π units. The CIF files (CCDC-2268733-2268739) can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

	C1 ²⁺ -2CMI ⁻	C2 ²⁺ -2CMI ⁻	C3 ²⁺ -2CMI ⁻	C4 ²⁺ -2CMI ⁻
Formula	$C_{42}H_{24}N_{10}$	$C_{44}H_{28}N_{10}$	$C_{46}H_{32}N_{10}$	$C_{48}H_{36}N_{10}$
fw	334.36	348.38	724.81	752.87
crystal size, mm	$0.130 \times 0.130 \times 0.080$	$0.200 \times 0.150 \times 0.100$	$0.130 \times 0.120 \times 0.030$	$0.200 \times 0.100 \times 0.040$
crystal system	Monoclinic	Triclinic	Triclinic	Monoclinic
space group	<i>C</i> 2/ <i>c</i> (no. 15)	<i>P</i> -1 (no. 2)	<i>P</i> -1 (no. 2)	$P2_1/c$ (no. 13)
a, Å	16.3110(4)	8.1502(3)	8.6480(3)	10.8550(2)
b, Å	19.5847(4)	10.8528(3)	11.3059(4)	18.6894(3)
<i>c</i> , Å	11.1122(3)	10.8895(3)	21.0344(7)	10.1304(2)
α , °	90	73.506(2)	74.729(3)	90
β,°	108.012(3)	71.656(3)	82.132(3)	107.219(2)
γ, °	90	89.385(2)	70.001(3)	90
V, Å ³	3375.78(15)	873.35(5)	1861.86(12)	1963.08(6)
$\rho_{\rm calcd}, {\rm gcm}^{-3}$	1.316	1.325	1.293	1.274
Z	8	2	2	2
<i>Т</i> , К	93	93	150	150
μ , mm ⁻¹	0.082 (Mo-Kα)	0.082 (Mo-Kα)	0.080 (Mo-Kα)	0.078 (Mo-Kα)
no. of reflns	27672	11949	21752	25997
no. of unique reflns	3873	3969	6796	4450
variables	241	247	510	266
λ, Å	0.71073 (Mo-Kα)	0.71073 (Mo-Kα)	0.71073 (Mo-Kα)	0.71073 (Mo-Kα)
$R_1 (I > 2\sigma(I))$	0.0401	0.0426	0.0791	0.0460
$wR_2 (I > 2\sigma(I))$	0.1058	0.1073	0.1766	0.1280
GOF	1.043	1.033	1.056	1.088
	C5 ²⁺ -2CMI ⁻	C6 ²⁺ -2CMI ⁻	C8 ²⁺ -2CMI ⁻	
Formula	$C_{50}H_{40}N_{10}$	$C_{52}H_{44}N_{10}$	C ₅₉ H ₅₆ N ₁₀ O	
fw	780.92	808.97	921.13	
crystal size, mm	$0.160\times0.140\times0.040$	$0.160 \times 0.140 \times 0.040$	$0.200\times0.160\times0.040$	
crystal system	Triclinic	Monoclinic	Triclinic	
space group	<i>P</i> -1 (no. 2)	$P2_1/c$ (no. 13)	<i>P</i> -1 (no. 2)	
a, Å	11.2406(2)	8.25330(10)	9.5662(2)	
b, Å	13.7520(3)	16.1442(3)	12.9105(3)	
с, Å	14.5481(3)	17.4065(4)	13.0276(3)	
<i>α</i> , °	68.229(2)	90	64.830(2)	
<i>β</i> , °	75.915(2)	110.275(2)	87.544(2)	
γ, °	85.545(2)	90	69.361(2)	
V, Å ³	2025.47(8)	2175.59(7)	1351.81(6)	
$ ho_{ m calcd}, m gcm^{-3}$	1.28	1.235	1.132	
Ζ	2	2	1	
Т, К	150	150	293	
μ , mm ⁻¹	0.079 (Mo-Kα)	0.076 (Mo-Kα)	0.070 (synchrotron)	
no. of reflns	28031	29170	71607	
no. of unique reflns	9221	4952	13259	
variables	549	284	338	
λ, Å	0.71073 (Mo-Kα)	0.71073 (Mo-Kα)	0.81107 (synchrotron)	
			0.0410	
$R_1 (I > 2\sigma(I))$	0.0637	0.0423	0.0618	
$R_1 (I > 2\sigma(I))$ wR_2 (I > 2\sigma(I))	0.0637 0.1632	0.0423 0.1108	0.0618 0.1903	

Table S1 Crystallographic details for C1²⁺-2CMI⁻, C2²⁺-2CMI⁻, C3²⁺-2CMI⁻, C4²⁺-2CMI⁻, C5²⁺-2CMI⁻, C6²⁺-2CMI⁻, and C8²⁺-2CMI⁻.

Fig. S13 Packing diagrams (viewed along the a, b, and c axes) of C1²⁺-2CMI⁻.

Fig. S14 Packing diagrams (viewed along the a, b, and c axes) of C2²⁺-2CMI⁻.

Fig. S15 Packing diagrams (viewed along the a, b, and c axes) of C3²⁺-2CMI⁻.

Fig. S16 Packing diagrams (viewed along the *a*, *b*, and *c* axes) of C4²⁺-2CMI⁻.

Fig. S17 Packing diagrams (viewed along the a, b, and c axes) of C5²⁺-2CMI⁻.

Fig. S18 Packing diagrams (viewed along the *a*, *b*, and *c* axes) of C6²⁺-2CMI⁻.

Fig. S19 Packing diagrams (viewed along the a, b, and c axes) of C8²⁺-2CMI⁻.

Fig. S20 Summarize of the stacking formation (D-A-D) of ion pairs in (a) C1²⁺-2CMI⁻, (b) C2²⁺-2CMI⁻, (c) C3²⁺-2CMI⁻, (d) C4²⁺-2CMI⁻, (e) C5²⁺-2CMI⁻, (f) C6²⁺-2CMI⁻ and (g) C8²⁺-2CMI⁻.

3. Optical properties

Fig. S21 (a) UV/vis absorption and (b) fluorescence spectra (10^{-5} M in MeOH) of Na⁺-CMI⁻ (black), C1²⁺-2CMI⁻ (red), C2²⁺-2CMI⁻ (orange), C3²⁺-2CMI⁻ (yellow), C4²⁺-2CMI⁻ (light green), C5²⁺-2CMI⁻ (green), C6²⁺-2CMI⁻ (blue), C7²⁺-2CMI⁻ (purple) and C8²⁺-2CMI⁻ (purple). The fluorescence spectra were obtained by excitation at the respective absorption maxima.

Fig. S22 Diffuse reflectance spectra of (a) $C1^{2+}-2CMI^{-}$, (b) $C2^{2+}-2CMI^{-}$, (c) $C3^{2+}-2CMI^{-}$, (d) $C4^{2+}-2CMI^{-}$, (e) $C5^{2+}-2CMI^{-}$, (f) $C6^{2+}-2CMI^{-}$, (g) $C7^{2+}-2CMI^{-}$ and (h) $C8^{2+}-2CMI^{-}$ shown in red lines compared with Na⁺-CMI⁻ shown in blue line. Notably, $Cn^{2+}-2CMI^{-}$ (n = 1–4) showed a remarkably divergent wavelength of absorption edge compared to Na⁺-CMI⁻. Their absorption are extended towards near-infrared, demonstrating a charge-transfer character.

Fig. S23 DSC thermograms of (a) C1²⁺-2CMI⁻, (b) C2²⁺-2CMI⁻, (c) C3²⁺-2CMI⁻, (d) C4²⁺-2CMI⁻, (e) C5²⁺-2CMI⁻, (f) C6²⁺-2CMI⁻, (g) C7²⁺-2CMI⁻ and (h) C8²⁺-2CMI⁻. Onset temperatures (°C) of melting points are labeled. C1²⁺-2CMI⁻ showed an exothermic peak at 260°C, indicating its decomposition before melting.