Supporting Information

Nanostructured Pt-doped Molybdenum Nitrides for Efficient Hydrogen Evolution Reaction

Experimental Section

Chemicals

Molybdenum powder (99.0%), Ammonium hexachloropalladate (IV) ((NH₄)₂PdCl₆, 99.9%), Chloroplatinic acid (H₂PtCl₆, Pt \geq 37.5%), Ruthenium chloride hydrate (RuCl₃·xH₂O,35.0-42.0% Ru basis) and Gold chloride trihydrate (HAuCl₄, \geq 99.9%) were purchased from Sigma-Aldrich Chemicals Ltd.. All reagents were directly used without any purification. Nafion solution (5% w/w in water and 1propanol) was obtained from Alfa Aesar. 20 wt% Pt/C was obtained from Shanghai Hesen Electric Co., Ltd. Carbon paper (TGP-h-060, Toray) were used.

Synthesis of MoO₃

 MoO_3 nanobelts were synthesized according to a previous reported process with slight modification (see the Supporting Information for details)¹.

Synthesis of MoN_x

Briefly, the as-obtained MoO₃ nanobelts (200 mg) were placed in a tube furnace and ammoniated under NH₃ atmosphere (100 mL min⁻¹) at 750 °C for 5 h with a ramping rate of 10 °C min⁻¹. After cooled down naturally to room temperature in NH₃, black products were collected.

Synthesis of Pt/MoN_x

In a typical experiment, MoN_x powder (100 mg) was dispersed in 5mL of water, and then a certain amount of H₂PtCl₆ solution (10 mg/mL) was added with magnetic stirring. After being stirred for 2 h, the sample was transferred to a glass dish and subsequently subjected for freeze-drying. Then, the precursor was placed in a crucible and heated to 400 °C at a rate of 5 °C min⁻¹ in H₂/Ar (5 wt%) and kept at this temperature for 3 h. Catalysts with different Pt weight loadingwere prepared using similar protocols. The as-prepared samples were denoted as Pt-0.5(0.5%), Pt-1(1%), Pt-3(3%), Pt-5(5%), and Pt-7(7%)

Synthesis of Pd/MoN_x, Au/MoN_x, Ru/ MoN_x

 Pd/MoN_x , Au/MoN_x and Ru/MoN_x were synthesized using the same method as that of Pt-5 except that (NH₄)₂PdCl₆, HAuCl₄, or RuCl₃ were added, respectively.

Characterization

The crystal structure and morphology of the as-synthesized samples were characterized by X-ray diffractometer (XRD) with Cu K α radiation ($\lambda = 0.154598$ nm), scanning electron microscopy (Verios 460L, FEI) and transmission electron microscopy with energy dispersive X-ray spectroscopy (EDS) analysis (TECNAI G2 and FEI Talos F200X). The chemical composition and valence state were characterized by X-ray photoelectron spectroscopy (XPS, Thermo Scientific ESCALAB 250Xi). The calibration of the binding energies of the C 1s main peak at 284.8 eV was used.

Electrochemical measurements

The HER electrocatalytic measurements were performed in a CHI 760E electrochemical workstation, using a three-electrode system in N₂ saturated 0.5 M H₂SO₄. Ag/AgCl electrode (in saturated KCl solution) and graphite rod were used as reference and counter electrodes, respectively. To prepare the catalyst ink, 5.0 mg catalyst was dispersed in a solution containing 480 μ l ethanol and 20 μ l 5% Nafion solution. After 3 h ultrasonication, 40 μ l catalyst ink was painted on a carbon paper (1 cm×1 cm), and then dried naturally. For comparison, Pt/C (20 wt% Pt, Johnson Matthey) ink was prepared in the same way. The loading of catalyst was 0.4 mg cm⁻².

Polarization curves were obtained with linear sweep voltammetry at a scan rate of 5 mV s⁻¹. All potentials were referenced to the reversible hydrogen electrode (RHE) through the equation: $E(RHE) = E(Ag/AgCl) + 0.198 + 0.059 \times pH$.

Electrochemical impedance spectroscopy (EIS) measurements were carried out from 0.1 Hz to 100 kHz with an amplitude of 50 mV. All data were recorded without iR compensation. The cyclic voltammograms (CV) were tested in a non-faradaic region from 0.224 to 0.424 V versus RHE with scan rates of 5, 10, 20, 40, and 80 mV s⁻¹. The electrochemically active surface area (ECSA) was estimated by the double-layer capacitance (C_{dl}) method which was measured by CV with various scan rate.

Fig.S1 XRD pattern of MoO₃

Fig.S2 SEM image (a) and TEM image (b) of MoO₃

Fig.S3. SEM (a), TEM (b), HRTEM (c), of MoN_x; TEM EDX spectrum (d) of Pt-5.

Fig.S4. N₂-physisorption isotherms (a) and BJH pore size distribution (b) of Pt-5 and MoN_x

Fig.S5 Polarization curves of Pt-7

Fig.S6 Polarization curves of Au, Ru, and Pd.

Fig.S7 XPS spectra of catalysts. XPS survey spectrum (a); Mo 3d (b).

Fig.S8 CV with different rates in the region of 0.224-0.424 V versus RHE for $MoN_x(a)$, Pt-1 (b), Pt-5 (c). Electrochemical double–layer capacitance (d).

Fig.S9 Post-HER testing characterization of Pt–5. XRD (a and b), HRTEM (c and e), Fourier transformation (FFT) pattern (d).

Catalysta	η_{10} (mV)	Durahility	Tafel slope (mV dec-	Referenc
Catalysis		Durability	1)	e
$Pt-SA/\alpha-MoO_X$	19	5000 cycles/20 h 123		2
Mo ₂ C@NC@Pt	27	1000 cycles/10 h	28	3
Pt Cs/MoO ₂ NSs	47	12h	32.6	4
α -MoC _{1-x} /Pt	30	10000 cycles	31	5
vMo _x C	130	20000 s		6
Co ₅₀ -Mo ₂ C-12	125	3000 cycles/12 h 70.9		7
Mo _x C	155	30 h 48		8
Mo ₂ C-Mo ₃ C ₂	134	5000 cycles/13 h	64	9
MoNCs	157	1000 cycles/10 h 60.6		10
Mo ₂ C/G	175	10 h	88	11
h-MoN@BNCNT	78	10000 cycles/24 h	46	12
MoN@NPCNCs	72	3000 cycles	53	13
Mo ₂ C nanobelts	140	1000 cycles	51.3	14
N,P-MoxC NF	107	1000 cycles	65.1	15
N@MoPCx	108	-	69.4	16
Mo ₂ N-Mo ₂ C/Gr-	157	2000 cvcles/50 h	55	17
3	107		55	17
MoN-NC	62	3000 cycles/15 h 54		18
dr-MoN	125	20 h	51	19
Mo ₂ C-MoO _x /CC ^a	74	5000 cycles	56	20
Pt-5	47	2000 cycles/ 25h	43	Our work

Table S1 The comparison of HER performance of Pt-5 with other Mo-based electrocatalysts in acidic electrolytes.

a 1.0 M HClO₄

Table S2 Mo 3d binding energies of samples

Catalysts	$Mo^{\sigma^{+}}(eV)$		Mo^{4+} (eV)		Mo^{6+} (eV)	
	3d _{5/2}	3d _{3/2}	3d _{5/2}	3d _{3/2}	3d _{5/2}	3d _{3/2}
MoN _x	229.04	232.19	230.08	233.23	232.82	235.97
Pt-1	228.96	232.11	229.88	233.03	232.62	235.77
Pt-5	228.72	231.87	229.77	232.92	232.54	235.69

References

- 1 K. Xia, Z. Chen, J. Yi, H. Xu, Y. Yu, X. She, Z. Mo, H. Chen, Y. Xu, H. Li, *Ind. Eng. Chem. Res.* 2018, **57**, 8863-8870.
- 2 J. Xu, C. Zhang, H. Liu, J. Sun, R. Xie, Y. Qiu, F. Lü, Y. Liu, L. Zhuo, X. Liu, J. Luo, *Nano Energy* 2020, **70**, 104529.
- J.-Q. Chi, J.-Y. Xie, W.-W. Zhang, B. Dong, J.-F. Qin, X.-Y. Zhang, J.-H. Lin, Y.-M. Chai, C.-G.

Liu, ACS Appl. Mater. Interfaces 2019, 11, 4047-4056.

- 4 X. Li, J. Yu, J. Jia, A. Wang, L. Zhao, T. Xiong, H. Liu, W. Zhou, *Nano Energy* 2019, **62**, 127-135.
- 5 H. J. Song, M. C. Sung, H. Yoon, B. Ju, D. W. Kim, Adv. Sci. 2019, 6, 1802135.
- 6 S. Kim, C. Choi, J. Hwang, J. Park, J. Jeong, H. Jun, S. Lee, S.-K. Kim, J. H. Jang, Y. Jung, J. Lee, ACS Nano 2020, 14, 4988-4999.
- 7 Y. Ma, M. Chen, H. Geng, H. Dong, P. Wu, X. Li, G. Guan, T. Wang, Adv. Funct. Mater. 2020, 30, 2000561.
- 8 X. Zhang, J. Wang, T. Guo, T. Liu, Z. Wu, L. Cavallo, Z. Cao, D. Wang, *Appl. Catal. B: Environ.* 2019, **247**, 78-85.
- 9 L. Jia, C. Li, Y. Zhao, B. Liu, s. cao, D. Mu, T. Han, G. Chen, Y. Lin, *Nanoscale* 2019, 11, 23318-23329.
- 10 C. Lei, W. Zhou, Q. Feng, Y. Lei, Y. Zhang, Y. Chen, J. Qin, Nano-Micro Lett. 2019, 11, 45.
- 11 H. Huang, C. Yu, H. Huang, W. Guo, M. Zhang, X. Han, Q. Wei, S. Cui, X. Tan, J. Qiu, *Small Methods* 2019, 3, 1900259.
- J. Miao, Z. Lang, X. Zhang, W. Kong, O. Peng, Y. Yang, S. Wang, J. Cheng, T. He, A. Amini, Q. Wu, Z. Zheng, Z. Tang, C. Cheng, *Adv. Funct. Mater.* 2019, **29**, 1805893.
- 13 M.-Q. Wang, C. Tang, C. Ye, J. Duan, C. Li, Y. Chen, S.-J. Bao, M. Xu, J. Mater. Chem. A 2018, 6, 14734-14741.
- 14 S. Jing, L. Zhang, L. Luo, J. Lu, S. Yin, P. K. Shen, P. Tsiakaras, *Appl. Catal. B: Environ.* 2018, 224, 533-540.
- 15 L. Ji, J. Wang, X. Teng, H. Dong, X. He, Z. Chen, ACS Appl. Mater. Interfaces 2018, 10, 14632-14640.
- 16 Y. Huang, J. Ge, J. Hu, J. Zhang, J. Hao, Y. Wei, Adv. Energy Mater. 2018, 8, 1701601.
- 17 H. Yan, Y. Xie, Y. Jiao, A. Wu, C. Tian, X. Zhang, L. Wang, H. Fu, Adv. Mater. 2018, 30, 1704156.
- 18 Y. Zhu, G. Chen, X. Xu, G. Yang, M. Liu, Z. Shao, ACS Catal. 2017, 7, 3540-3547.
- 19 J. Xiong, W. Cai, W. Shi, X. Zhang, J. Li, Z. Yang, L. Feng, H. Cheng, J. Mater. Chem. A 2017, 5, 24193-24198.
- 20 L. He, W. Zhang, Q. Mo, W. Huang, L. Yang, Q. Gao, Angew. Chem. Int. Ed. 2020, 59, 3544-3548.