Quaternary ammonium salts based on caprylic acid as antimicrobial and surface-active agents

Marta Wojcieszak ^a, Anna Syguda ^a, Maciej Karolak ^b, Łukasz Pałkowski ^b, Katarzyna Materna ^{a,*}

^a Poznan University of Technology, Faculty of Chemical Technology, Berdychowo 4, 60-965, Poznan, Poland.

^b Department of Pharmaceutical Technology, Faculty of Pharmacy, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland.

* corresponding author: e-mail: <u>katarzyna.materna@put.poznan.pl</u>

List of tables

Table S1. Chemical shifts (δ) and co	upling constants (J) valu	ies in ¹ H NMR sp	ectra for
aminoamide and aminoest	er based on caprylic acid ((CDCl ₃)	5
Table S2. Chemical shift (δ) values in	¹³ C NMR spectra for ar	minoamide and am	ninoester
based on caprylic acid (CDC	l ₃)		6
Table S3. Chemical shifts (δ) and co	upling constants (J) valu	ies in ¹ H NMR sp	ectra for
amidequats based on capry	lic acid (CDCl ₃)		7
Table S4. Chemical shift (δ) values in	¹³ C NMR spectra for am	idequats based on	caprylic
acid (CDCl ₃)			8
Table S5. Chemical shifts (δ) and co	upling constants (J) valu	ies in ¹ H NMR sp	ectra for
esterquats based on capryl	c acid (CDCl ₃)		9
Table S6. Chemical shift (δ) values in ¹³	C NMR spectra for ester	quats based on cap	rylic acid
(CDCl ₃)			

List of figures

Fig. S1. ¹ H NMR spectrum of <i>N</i> -[(2-dimethylamino)ethyl]octanamide.	11
Fig. S2. ¹³ C NMR spectrum of <i>N</i> -[(2-dimethylamino)ethyl]octanamide	12
Fig. S3. ¹ H NMR spectrum of (2-dimethylamino)ethyl octanate.	13
Fig. S4. ¹³ C NMR spectrum of (2-dimethylamino)ethyl octanate	14
Fig. S5. ¹ H NMR spectrum of dimethyl- <i>N</i> -[(2-octanamido)ethyl]octylammonium bromide	
(AC8)	15
Fig. S6. ¹³ C NMR spectrum of dimethyl- <i>N</i> -[(2-octanamido)ethyl]octylammonium bromide	
(AC8)	16
Fig. S7. ¹ H NMR spectrum of dimethylnonyl- <i>N</i> -[(2-octanamido)ethyl]ammonium bromide	
(AC9)	17
Fig. S8. ¹³ C NMR spectrum of dimethylnonyl- <i>N</i> -[(2-octanamido)ethyl]ammonium bromide	
(AC9)	18
Fig. S9. ¹ H NMR spectrum of decyldimethyl- <i>N</i> -[(2-octanamido)ethyl]ammonium bromide	
(AC10)	19

Fig. S10.	¹³ C NMR spectrum of decyldimethyl- <i>N</i> -[(2-octanamido)ethyl]ammonium bromide
	(AC10)
Fig. S11.	¹ H NMR spectrum of dimethyl- <i>N</i> -[(2-octanamido)ethyl]undecylammonium bromide
	(AC11)
Fig. S12.	¹³ C NMR spectrum of dimethyl-N-[(2-octanamido)ethyl]undecylammonium bromide
	(AC11)
Fig. S13.	¹ H NMR spectrum of dodecyldimethyl- <i>N</i> -[(2-octanamido)ethyl]ammonium bromide
	(AC12)23
Fig. S14.	¹³ C NMR spectrum of dodecyldimethyl-N-[(2-octanamido)ethyl]ammonium
	bromide (AC12)24
Fig. S15.	¹ H NMR spectrum of dimethyl-N-[(2-octanamido)ethyl]tetradecylammonium
	bromide (AC14)25
Fig. S16.	¹³ C NMR spectrum of dimethyl-N-[(2-octanamido)ethyl]tetradecylammonium
	bromide (AC14)26
Fig. S17.	¹ H NMR spectrum of hexadecyldimethyl- <i>N</i> -[(2-octanamido)ethyl]ammonium
	bromide (AC16)27
Fig. S18.	¹³ C NMR spectrum of hexadecyldimethyl-N-[(2-octanamido)ethyl]ammonium
	bromide (AC16)
Fig. S19.	¹ H NMR spectrum of dimethyl-2-octanoyloxyethyloctylammonium bromide (EC8).
Fig. S20.	¹³ C NMR spectrum of dimethyl-2-octanoyloxyethyloctylammonium bromide (EC8).
Fig. S21.	¹ H NMR spectrum of dimethylnonyl-2-octanoyloxyethylammonium bromide (EC9).
Fig. S22.	¹³ C NMR spectrum of dimethylnonyl-2-octanoyloxyethylammonium bromide (EC9).
Fig. S23.	¹ H NMR spectrum of decyldimethyl-2-octanoyloxyethylammonium bromide (EC10).
Fig. S24.	¹³ C NMR spectrum of decyldimethyl-2-octanoyloxyethylammonium bromide (EC10).
Fig. S25.	¹ H NMR spectrum of dimethyl-2-octanoyloxyethylundecylammonium bromide
	(EC11)35

Fig. S26	. ¹³ C NMR spectrum of dimethyl-2-octanoyloxyethylundecylammonium bromide
	(EC11)
Fig. S27	. ¹ H NMR spectrum of dodecyldimethyl-2-octanoyloxyethylammonium bromide
	(EC12)
Fig. S28	¹³ C NMR spectrum of dodecyldimethyl-2-octanoyloxyethylammonium bromide
	(EC12)
Fig. S29	. ¹ H NMR spectrum of dimethyl-2-octanoyloxyethyltetradecylammonium bromide
	(EC14)
Fig. S30	¹³ C NMR spectrum of dimethyl-2-octanoyloxyethyltetradecylammonium bromide
	(EC14)40
Fig. S31	. ¹ H NMR spectrum of hexadecyldimethyl-2-octanoyloxyethylammonium bromide
	(EC16)41
Fig. S32	. ¹³ C NMR spectrum of hexadecyldimethyl-2-octanoyloxyethylammonium bromide
	(EC16)42
Fig. S3 esterqu	 Effect of the elongation of alkyl chain on the CMC of amidequats and ats43

Protons	Number of protons	Multiplicity of the signal	$ \begin{array}{c} \mathbf{f} \\ \mathbf{H}_{3}\mathbf{C} \\ \mathbf{h} \\ $	f NCH ₃	$ \begin{array}{c} \mathbf{f} \\ \mathbf{H}_{3}\mathbf{C} \\ \mathbf{h} \\ \mathbf{i} \\ \mathbf{c} \\ \mathbf{a} \\ \mathbf{c} \\ \mathbf{c} \\ \mathbf{a} \\ \mathbf{c} \\ \mathbf{c} \\ \mathbf{a} \\ \mathbf{c} \\ $	f
			o (ppm)	J (Hz)	o (ppm)	J (Hz)
а	3H	triplet	0.82	6.6	0.87	6.8
b	2nH	multiplet	1.24	-	1.27	-
С	2H	quintet	1.57	7.0	1.61	7.0
е	2H	triplet	2.12	7.7	2.31	7.5
f	6H	singlet	2.19	-	2.27	-
h	2H	triplet	2.37	6.0	2.55	5.7
i	2H	quartet/ triplet	3.28 (quartet)	5.7	4.16 (triplet)	5.7
j	1H	triplet	6.13	5.1	-	-

Table S1. Chemical shifts (δ) and coupling constants (*J*) values in ¹H NMR spectra for aminoamide and aminoester based on caprylic acid (CDCl₃).

Table S2. Chemical shift (δ) values in ¹³C NMR spectra for aminoamide and aminoester based on caprylic acid (CDCl₃).

Carbon atoms	$ \begin{array}{c} $	$ \begin{array}{c} $
	δ (ppm)	δ (ppm)
1	13.95	13.99
2	22.49, 25.69, 28.92, 29.17	22.52, 24.87, 28.86, 29.02
3	31.60	31.59
4	36.55	34.19
5	36.62	61.94
6	44.99	45.64
7	57.81	57.79
9	173.21	173.86

Prot	Multiplicity of Number of p	Multiplicity of t					a H ₃ C	↓ c 4 c H		$ \begin{array}{c} \mathbf{f} \\ \mathbf{CH}_{3} \\ {} \\{} {} \\{} \\{} {} {} {} \\{} }{ }{ }{ }{ }{ }{ }{}{ }{} {} {} $	\mathbf{Br}^{-} \mathbf{g} \mathbf{b} \mathbf{d} \mathbf{f}	A CH ₃				
ons	oto	he s			1		1		Comp	ound	1				I	
	suc	sign	Α	C8	A	C9	AC1	0	AC	11	AC	12	AC	14	AC	16
		a	n :	= 5	n =	= 6	n = 1	7	n =	8	n =	9	n =	11	n =	13
			δ	J	δ	J	δ	J	δ	J	δ	J	δ	J	δ	J
			(ppm)	(Hz)	(ppm)	(Hz)	(ppm)	(Hz)	(ppm)	(Hz)	(ppm)	(Hz)	(ppm)	(Hz)	(ppm)	(Hz)
а	6H	triplet	0.82	6.8	0.83	6.9	0.83	6.6	0.83	6.8	0.83	6.6	0.82	6.9	0.88	7.0
h	2(<u>/</u> +n)H	multiple	1.21,	_	1.21,	_	1.21,	_	1.20,	_	1.21,	_	1.20,	_	1.25,	_
	2(4.11)11	t	1.30		1.30		1.31		1.30		1.31		1.30		1.36	
С	2H	quintet	1.55	7.2	1.56	7.1	1.56	6.9	1.56	7.2	1.56	6.9	1.56	6.9	1.62	7.4
d	2H	multiple t	1.69	-	1.69	-	1.70	-	1.69	-	1.69	-	1.68	-	1.70	-
е	2H	triplet	2.21	7.7	2.22	7.7	2.23	7.7	2.22	7.8	2.23	7.7	2.22	7.7	2.22	7.7
f	6H	singlet	3.32	-	3.32	-	3.32	-	3.33	-	3.33	-	3.32	-	3.32	-
g	2H	triplet	3.51	8.5	3.52	8.5	3.50	8.4	3.52	8.6	3.51	8.3	3.51	8.4	3.50	8.6
h	2H	multiple	2 70		2 71		2 71		2 71		2 72		2 71		2 77	
i	2H	t	3.70	-	3./1	-	3./1	-	3./1	-	3.72	-	3.71	-	3.//	-
j	1H	triplet	8.23	5.0	8.23	5.0	8.25	5.1	8.23	5.0	8.25	5.1	8.23	5.1	8.28	5.0

Table S3. Chemical shifts (δ) and coupling constants (J) values in ¹H NMR spectra for amidequats based on caprylic acid (CDCl₃).

Carbon aton	$ \begin{array}{c} 1 \\ H_{3}C \\ \begin{array}{c} 1 \\ H_{3}C \\ \begin{array}{c} 1 \\ 4 \\ 3 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ CH_{3} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ CH_{3} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ CH_{3} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$										
SI	AC8	AC9	AC10	AC11	AC12	AC14	AC16				
	n = 5	n = 6	n = 7	n = 8	n = 9	n = 11	n = 13				
	δ (ppm)	δ (ppm)	δ (ppm)	δ (ppm)	δ (ppm)	δ (ppm)	δ (ppm)				
1	13.86, 13.90	13.91	13.96	13.92, 13.94	13.96, 13.99	13.93, 13.96	14.09				
	22.38, 22.43,	22.45, 22.71,	22.50, 22.52,	22 16 22 50 22 72	22 50 22 55 22 75	22.48, 22.53, 22.74,	22.62, 22.67,				
	22.69, 25.31,	25.33, 26.11,	22.75, 25.39,	25 34 26 12 28 92	25 39 26 17 28 95	25.35, 26.14, 28.92,	22.85, 25.48,				
2	26.09, 28.87,	28.90, 28.95,	26.16, 28.94,	29.08 29 12 29 18	29 11 29 20 29 21	29.10, 29.20, 29.27,	26.24, 29.17,				
	28.89, 28.99,	29.05, 29.17,	29.10, 29.21,	29 25 29 31 29 37	29 29 29 35 29 46	29.33, 29.45, 29.49,	29.33, 29.43,				
	29.16	29.18	29.28, 29.29	25.25, 25.51, 25.57	23.23, 23.33, 23.40	29.52	29.56, 29.65				
3	31.45, 31.53	31.54, 31.59	31.59, 31.70	31.56, 31.70	31.60, 31.76	31.56, 31.76	31.81, 31.90				
4	33.85	33.86	33.89	33.87	33.92	33.89	34.05				
5	36.15	36.17	36.19	36.17	36.20	36.17	36.34				
6	51.56	51.57	51.60	51.57	51.61	51.58	51.74				
7	62.47	62.49	62.56	62.50	62.56	62.52	62.88				
8	65.39	65.41	65.49	65.42	65.50	65.44	65.86				
9	174.59	174.61	174.75	174.62	174.72	174.64	174.91				

Table S4. Chemical shift (δ) values in ¹³C NMR spectra for amidequats based on caprylic acid (CDCl₃).

Proto	Multiplicity of th Number of pro	Multiplicity of th					a H ₃ C	4 C		$ \begin{array}{c} \mathbf{f} \\ \mathrm{CH}_{3} \\ \mathbf{h} \\ h$	Br ⁻ g b d	a CH ₃				
ns	otor	e si			1				Comp	ound			1		1	
	SL	gna	EC8		EC	:9	EC1	0	EC	11	EC	12	EC	14	EC	L6
		<u> </u>	m = 5		m :	m = 6 m = 7		m =	= 8	m = 9		m = 11		m = 13		
			δ	J	δ	J	δ	J	δ	J	δ	J	δ	J	δ	J
			(ppm)	(Hz)	(ppm)	(Hz)	(ppm)	(Hz)	(ppm)	(Hz)	(ppm)	(Hz)	(ppm)	(Hz)	(ppm)	(Hz)
а	6H	triplet	0.88	6.4	0.88	6.5	0.88	6.4	0.88	6.7	0.88	6.7	0.88	6.7	0.88	6.8
h	2(4+n)H	multiple	1.28,	_	1.27,	_	1.26,	_	1.26,	_	1.26,	_	1.26,	_	1.26,	_
	2(4).11/1	t	1.36		1.36		1.36		1.36		1.36		1.36		1.35	
С	2H	quintet	1.61	7.2	1.61	7.2	1.61	7.2	1.61	7.3	1.61	7.2	1.61	7.2	1.61	7.0
d	2H	multiple t	1.78	-	1.78	-	1.77	-	1.77	-	1.77	-	1.77	-	1.76	-
е	2H	triplet	2.35	7.6	2.35	7.7	2.35	7.6	2.35	7.7	2.35	7.7	2.35	7.7	2.35	7.6
f	6H	singlet	3.49	-	3.50	-	3.48	-	3.51	-	3.50	-	3.51	-	3.49	-
g	2H	triplet	3.65	8.4	3.63	8.5	3.59	8.4	3.62	8.5	3.63	8.5	3.62	8.5	3.58	8.4
h	2H	triplet	4.08	4.6	4.09	4.8	4.05	4.6	4.09	4.8	4.09	4.7	4.09	4.7	4.07	4.8
i	2H	triplet	4.58	4.4	4.58	4.6	4.58	4.5	4.57	4.6	4.58	4.5	4.57	4.6	4.57	4.7

Table S5. Chemical shifts (δ) and coupling constants (J) values in ¹H NMR spectra for esterquats based on caprylic acid (CDCl₃).

Carbon atc	$1 \xrightarrow{2}_{H_3C} 4 \xrightarrow{2}_{4_3} 9 \xrightarrow{0}_{O} \xrightarrow{6}_{CH_38} 2 \xrightarrow{1}_{n} \xrightarrow{CH_3}_{CH_3} \xrightarrow{6}_{CH_3} \xrightarrow{1}_{H_3} \xrightarrow{1}_{CH_3} \xrightarrow{1}_{H_3} \xrightarrow{1}_{CH_3} \xrightarrow{1}_{H_3} \xrightarrow{1}_{$										
l su				Compoun	d		1				
	EC8	EC9	EC10	EC11	EC12	EC14	EC16				
	n = 5	n = 6	n = 7	n = 8	n = 9	n = 11	n = 13				
	δ (ppm)	δ (ppm)	δ (ppm)	δ (ppm)	δ (ppm)	δ (ppm)	δ (ppm)				
1	13.74	13.86, 13.89	13.92, 13.96	19.91, 13.97	13.84, 13.90	13.91, 13.98	13.96, 14.02				
2	22.26, 22.66, 24.37, 26.00, 28.58, 28.77, 28.78, 28.92,	22.38, 22.43, 22.78, 24.49, 26.12, 28.71, 28.89, 28.95, 29.21	22.45, 22.52, 22.82, 24.55, 26.19, 28.78, 28.95, 29.12, 29.16, 29.32	22.44, 22.53, 22.83, 24.55, 26.19, 28.77, 28.95, 29.16, 29.31, 29.36, 29.41	22.37, 22.46, 22.76, 24.47, 26.12, 28.69, 28.87, 29.11, 29.25, 29.29, 29.39	22.45, 22.55, 22.83, 24.55, 26.20, 28.77, 28.95, 29.17, 29.22, 29.32, 29.37, 29.47, 29.52, 29.55	22.48, 22.59, 22.80, 22.86, 24.72, 26.20, 28,81, 28.98, 29.15, 29.21, 29.26, 29.33, 29.37, 29.41, 29.52, 29.57, 29,60				
3	31.31, 31.34	31.44, 31.58	31.49, 31.70	31.49, 31.74	31.41, 31.68	31.49, 31.78	31.53, 31.82				
4	33.75	33.87	33.94	33.93	33.86	33.93	33.96				
5	61.90	62.00	62.08	62.03	61.97	62.04	62.11				
6	51.62	51.73	51.86	51.78	51.71	51.79	52.02				
7	57.43	57.49	57.60	57.51	57.49	57.52	57.54				
8	65.17	65.26	65.31	65.30	65.22	65.30	65.37				
9	172.44	172.57	172.67	172.62	172.55	127.63	172.68				

Table S6. Chemical shift (δ) values in ¹³C NMR spectra for esterquats based on caprylic acid (CDCl₃).

Fig. S1. ¹H NMR spectrum of *N*-[(2-dimethylamino)ethyl]octanamide.

Fig. S2. ¹³C NMR spectrum of *N*-[(2-dimethylamino)ethyl]octanamide.

Fig. S3. ¹H NMR spectrum of (2-dimethylamino)ethyl octanate.

Fig. S4. ¹³C NMR spectrum of (2-dimethylamino)ethyl octanate.

Fig. S5. ¹H NMR spectrum of dimethyl-*N*-[(2-octanamido)ethyl]octylammonium bromide (**AC8**).

Fig. S6.¹³C NMR spectrum of dimethyl-*N*-[(2-octanamido)ethyl]octylammonium bromide (AC8).

Fig. S7. ¹H NMR spectrum of dimethylnonyl-*N*-[(2-octanamido)ethyl]ammonium bromide (**AC9**).

Fig. S8.¹³C NMR spectrum of dimethylnonyl-*N*-[(2-octanamido)ethyl]ammonium bromide (AC9).

Fig. S9. ¹H NMR spectrum of decyldimethyl-*N*-[(2-octanamido)ethyl]ammonium bromide (**AC10**).

Fig. S10.¹³C NMR spectrum of decyldimethyl-*N*-[(2-octanamido)ethyl]ammonium bromide (AC10).

Fig. S11. ¹H NMR spectrum of dimethyl-*N*-[(2-octanamido)ethyl]undecylammonium bromide (**AC11**).

Fig. S12.¹³C NMR spectrum of dimethyl-*N*-[(2-octanamido)ethyl]undecylammonium bromide (AC11).

Fig. S13. ¹H NMR spectrum of dodecyldimethyl-*N*-[(2-octanamido)ethyl]ammonium bromide (**AC12**).

Fig. S14. ¹³C NMR spectrum of dodecyldimethyl-*N*-[(2-octanamido)ethyl]ammonium bromide (AC12).

Fig. S15. ¹H NMR spectrum of dimethyl-*N*-[(2-octanamido)ethyl]tetradecylammonium bromide (AC14).

Fig. S16. ¹³C NMR spectrum of dimethyl-*N*-[(2-octanamido)ethyl]tetradecylammonium bromide (AC14).

Fig. S17. ¹H NMR spectrum of hexadecyldimethyl-*N*-[(2-octanamido)ethyl]ammonium bromide (AC16).

Fig. S18. ¹³C NMR spectrum of hexadecyldimethyl-*N*-[(2-octanamido)ethyl]ammonium bromide (AC16).

Fig. S19. ¹H NMR spectrum of dimethyl-2-octanoyloxyethyloctylammonium bromide (**EC8**).

Fig. S20. ¹³C NMR spectrum of dimethyl-2-octanoyloxyethyloctylammonium bromide (EC8).

Fig. S21. ¹H NMR spectrum of dimethylnonyl-2-octanoyloxyethylammonium bromide (**EC9**).

Fig. S22. ¹³C NMR spectrum of dimethylnonyl-2-octanoyloxyethylammonium bromide (**EC9**).

Fig. S23. ¹H NMR spectrum of decyldimethyl-2-octanoyloxyethylammonium bromide (**EC10**).

Fig. S24. ¹³C NMR spectrum of decyldimethyl-2-octanoyloxyethylammonium bromide (EC10).

Fig. S25. ¹H NMR spectrum of dimethyl-2-octanoyloxyethylundecylammonium bromide (**EC11**).

Fig. S26. ¹³C NMR spectrum of dimethyl-2-octanoyloxyethylundecylammonium bromide (EC11).

Fig. S27. ¹H NMR spectrum of dodecyldimethyl-2-octanoyloxyethylammonium bromide (**EC12**).

Fig. S28. ¹³C NMR spectrum of dodecyldimethyl-2-octanoyloxyethylammonium bromide (EC12).

Fig. S29. ¹H NMR spectrum of dimethyl-2-octanoyloxyethyltetradecylammonium bromide (EC14).

Fig. S30. ¹³C NMR spectrum of dimethyl-2-octanoyloxyethyltetradecylammonium bromide (EC14).

Fig. S31. ¹H NMR spectrum of hexadecyldimethyl-2-octanoyloxyethylammonium bromide (**EC16**).

Fig. S33. Effect of the elongation of alkyl chain on the CMC of amidequats and esterquats.