Supporting Information

High-sensitivity hybrid MoSe₂/AgInGaS quantum dots heterojunction photodetector

Xunjia Zhao^{#1}, Xusheng Wang^{#1}, Runmeng Jia¹, Yuhai Lin¹, TingTing Guo¹, Linxiang Wu¹, Xudong Hu¹, Tong Zhao¹, Danni Yan¹, Lin zhu², Zhanyang Chen², Xinsen Xu², Xiang Chen^{*1}, Xiufeng Song^{*1}

1 MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

2 Shangdong Gemei Tungsten & Molybdenum Material Co.LTD, Weihai 265222,China

These authors contributed equally to this work.

*Corresponding Author

E-mail: xiangchen@njust.edu.cn, xiufengsoong@njust.edu.cn

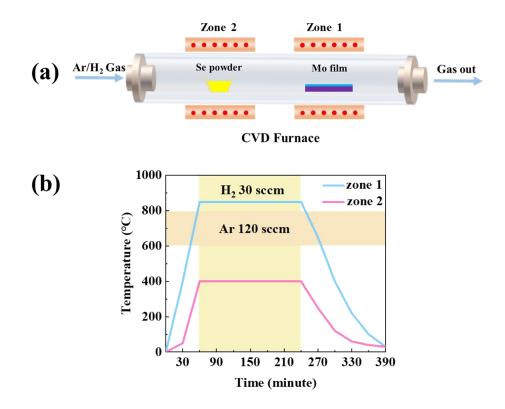


Fig.S1 (a) Schematic diagram of the quartz tube and the precursor positions. (b) The change process of reaction temperature of Zone 1 and Zone 2.

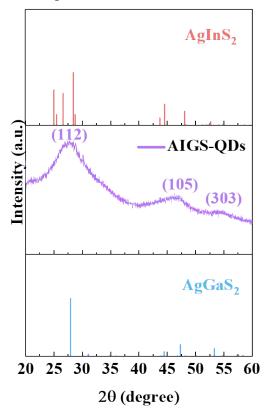


Fig.S2 XRD pattern of the AIGS-QDs. XRD patterns of $AgInS_2$ (PDF# 25-1328) and $AgGaS_2$ (PDF# 73-1233) are included as references.

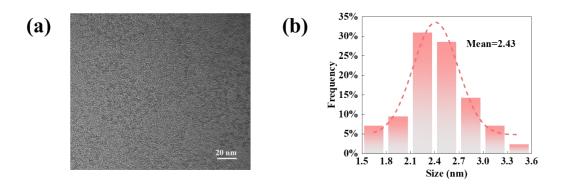


Fig.S3 (a) TEM image of the AIGS-QDs. Scale bar is 20 nm. (b) Histograms of the AIGS-QDs size distribution.

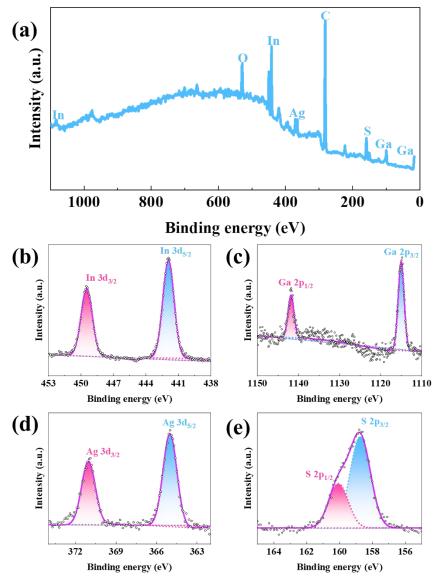


Fig.S4 XPS spectra of AIGS-QDs. (a) Survey spectrum. (b) In $3d_{3/2}$ and $3d_{5/2}$ peaks.(c) Ga $2p_{1/2}$ and Ga $2p_{3/2}$ peaks. (d) Ag $3d_{3/2}$ and $3d_{5/2}$ peaks. (e) S $2p_{1/2}$ and S $2p_{3/2}$ peaks.

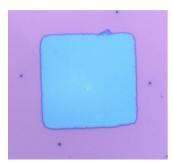


Fig.S5 Optical microscope (OM) photograph of a square (50 μ m × 50 μ m) MoSe₂ film.

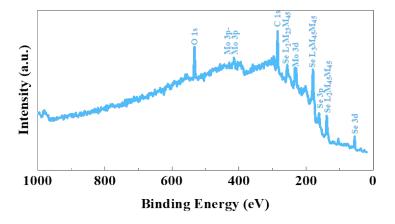


Fig.S6 XPS spectrum of MoSe₂.

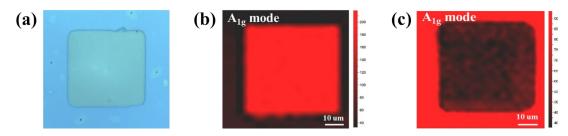


Fig.S7 (a) Optical microscope (OM) photograph of $MoSe_2$ film with AIGS-QDs. (b) A_{1g} mode Raman mapping. (c) A_{1g} mode Raman mapping.

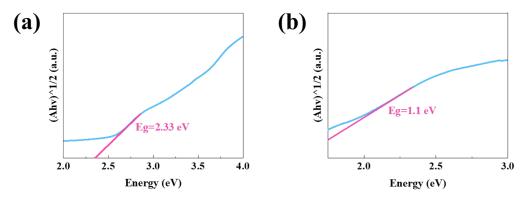


Fig.S8 Bandgap of AIGS-QDs and MoSe₂ are determined using Tauc plots.

The TRPL decay curves in Fig.2c were fitted using a biexponential decay equation to determine the lifetime of both AIGS-QDs and the MoSe₂/AIGS-QDs heterostructure. The biexponential decay equation is given by:

$$Y(x) = y_0 + A_1 * exp(\frac{-x}{\tau_1}) + A_2 * exp(\frac{-x}{\tau_2}).$$

The average lifetime (τ) is calculated from the fitting parameters as an intensity

$$\sum A_i \tau_i^2$$

weighted average, given by $\tau = \sum Ai\tau i$ (i=1,2).

Table S1. PL lifetimes of AIGS-QDs and MoSe₂/AIGS-QDs heterojunction.

	Уo	A_1	$\tau_1(ns)$	A_2	$\tau_2(ns)$	R	τ (ns)
AIGS-QDs	1272.79	1872.51	1.28	1959.74	16.91	0.993	15.84
MoSe ₂ /AIGS-QDs	723.47	3500.11	1.54	1046.89	6.71	0.995	4.46