Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2024

> **Supporting Information** 1 Functionalization of Shorea faguetian Biochar using Fe₂O₃ 2 Nanoparticles and MXene for Rapid Removal of Methyl 3 Blue and Lead from both Single and Binary Systems 4 Aysha Bukhari², Irfan Ijaz², Ammara Nazir², Sajjad Hussain^{1, 2}, Ezaz Gilani², Dr. Hina Zain³, 5 Ahmad A. Ifseisi⁴, Hijaz Ahmad^{5, 6, 7} 6 7 ¹School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang, 453007, China 8 ⁹ ²School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University Lahore, Lahore 54700, 10 Pakistan ³Department of Biological Sciences, Superior University Lahore, Lahore 54700, Pakistan 11 ⁴Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia 12 ⁵Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait 13 ⁶Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon 14 15 ⁷Near East University, Operational Research Center in Healthcare, TRNC Mersin 10, Nicosia, 99138, Turkey Corresponding Author; Irfan Ijaz (iffichemixt266@gmail.com) 16 2.1. Chemicals used for this work 17 MAX phase powder (Ti3AlC2; Jilin Technology Co.Ltd), Hydroflouric acid (HF; 40 wt%), and 18 Ferric Chloride salt were obtained from Merk chemical Lahore, Pakistan. Anhydrous Ferric 19 20 chloride salt, methyl blue, and Ammonia solution (NH₃) were obtained from Sigma Aldrich chemical Lahore, Pakistan, and Shorea faguetian branches were purchased from the native market 21 22 of Lahore. The botanist at the Minhaj University Lahore (department of botany) certified the Shorea faguetian. 23

24 **2.3.** Characterizations

The X-Ray (XRD) diffractograms were acquired by Rigaku TTRAX III (Cu Ka radiation). The 25 Fourier transform infrared (FTIR) was determined using Tensor27 (Bruker, Germany) to analyze 26 27 the variation of a functional group on the adsorbent's surface. The morphological feature and elemental composition of the composite were determined using a transmission electron microscope 28 (Hitachi S3400N, Japan), scanning electron microscope (JEOL 6500F, Japan), and EDS (TM-3000 29 Hitachi). The distribution and valance of elements in composites were determined by X-ray 30 photoelectron spectroscopy (ESCALAB 250, USA). The textural features of composites were 31 determined by N2 adsorption-desorption via Quanta chrome Autosorb 1 gas analyzer. The pore 32 volume (cm² g⁻¹) and surface area (m2 g⁻¹) of Fe₂O₃/BC/MXene composites were investigated via 33 Brunauer-Emmett-Teller (BET) and Barret-Joyner-Hallenda (BJH) approaches, respectively. By 34 using a vibrating sample magnetometer, the adsorbent's magnetic hysteresis loop was calculated 35 (VSM). 36

37 2.4. Adsorption experiment

Adsorption investigation was conducted in a 250 mL flask. A total of 0.2 g of Fe₂O₃/BC/MXene adsorbent was dissolved in 200 mL of lead and MB solutions unless otherwise defined, and the resulting mixture was stirred in a rotating shaker at 200 pm. The pH of the reaction mixture was 2.0-11. The sorption investigations were performed at temperatures 293, 303, and 313 K. The lead and MB concentrations were 50-750 (mg/L), and the adsorption time was 1 -50 min. The sorption capability and rate of lead and MB removal were determined utilizing equations 1 and 2.

45
$$R = \left(\frac{C_o - C_e}{C_e}\right) \times 100 \qquad \qquad \land * \text{ MERGEFORMAT (2)}$$

46 Among them, q_e represents adsorption capability in mg g⁻¹, C_o represents lead initial lead (II) and 47 MB concentrations earlier than adsorption, R represents the remaining elimination rate (%), M 48 represents the molecular mass of composite, and V represents the molar volume of lead (II) and 49 solution in mL.

50 **2.5.** Isothermal study

51 The isotherm data were derived to determine the sorption capability of lead and MB using 52 composite. The experimental pieces of information were separately subjected to investigation via 53 Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models. Here, the Langmuir and 54 Freundlich isotherms, respectively, were employed to identify the monolayer and multilayer 55 sorption¹². Langmuir isotherm equation is expressed below as in eq 3

56
$$q_e = \frac{q_{\max} K_L C_e}{1 + K_L C_e}$$
 * MERGEFORMAT (3)

57 Here, $q_e (mg g^{-1})$ denotes the metal and dye sorption capability state of equilibrium, C_e denotes the 58 pb²⁺ ions and MB dosage at equilibrium (mg/L), q_{max} denotes the single-layered sorption capability 59 (mg/g), and K_L denotes the Langmuir rate constant (L mg⁻¹).

60 Freundlich isotherm equation is expressed below as in eq 4.

61
$$q_e = K_F C_e^n$$
 * MERGEFORMAT (4)

62 Here, q_e/KF (mg/g) denotes the metal sorption capability at equilibrium, C_e denotes the Pb⁺² ions 63 and MB dye dosage at equilibrium (mg/L) and represents the Freundlich rate constant.

64 The Temkin model was utilized to measure the relationship between adsorbate and adsorbent³.

65 The determination and calculation of Temkin parameters are exhibited by equation 6.

66
$$q_e = q_s \exp(-B_{\epsilon}^2)$$
 * MERGEFORMAT (5)

67
$$q_e = \frac{RT}{b} \ln \left(A C_e \right) \qquad \qquad \land * \text{ MERGEFORMAT (6)}$$

68 Among them, A (L mol⁻¹) denotes the equilibrium constant associated with the highest binding 69 energy, R (J/mol K⁻¹) denotes the gas constant, T represents the sorption temperature (K), and b 70 represents the Temkin isotherm coefficient.

71

72 **2.6.** Kinetics analysis

The Kinetics of adsorption of lead and MB on the Fe₂O₃/BC/MXene composite were explored in this work. The lead and MB concentrations were determined at 10, 20, 30, 40, and 50 min. The sorption rate (%) was guage via pseudo-first-order (PFO), pseudo-second-order reaction (PSO), and intra-particle diffusion (IPD), Elovich, and Bangham diffusion model defined as in eq 7, 8, 9. 10, and 11, respectively.

78 PFO:

79
$$q_e = (q_e - q_t) = \ln q_e - K_1 t$$
 * MERGEFORMAT (7)

80 PSO:

81
$$q_e = \frac{t}{q_e} + \frac{1}{K_2 q_t^2} \qquad \qquad \land * \text{ MERGEFORMAT (8)}$$

82

83 IPD

$$q_e = K_{3t}^{0.5} + C$$
 * MERGEFORMAT (9)

85 Elovich

84

86
$$q_{t} = \frac{1}{\beta} \ln \left(\alpha \beta \right) + \frac{1}{\beta} \ln t \qquad \qquad \land * \text{ MERGEFORMAT (10)}$$

87 Bangham diffusion model

88
$$\log \log \left(\frac{C_t}{C_t - q_t M} \right) = \log \left(\frac{K_j M}{2.303V} \right) + \alpha \log t \, \forall \text{MERGEFORMAT (11)}$$

Among them, qt denotes sorption equilibrium (mg g⁻¹) at any time, and t (min) denotes sorption time. α denotes chemical sorption rate in mg g⁻¹ min⁻¹ and β represents the degree of surface area covered and activation energy in (g mg⁻¹). *M* expresses the concentration of the sorbent (g/L), and *V* defines the volume in mL. K₁, K₂, and K₃ denote the PFO, PSO, and ID kinetics rate constants, respectively. The Kj constants can be calculated by extracting them from the intercept and slope of the fitting plot. C denotes the constant which is connected to the thickness of the available boundary layers.

96 **2.8.** Thermodynamic study

97 Each parameter of thermodynamic sorption, such as standard entropy (Δ S; KJmol⁻¹), Gibbs free 98 energy (Δ G; KJmol⁻¹), and standard enthalpy (Δ H; KJmol⁻¹), was determined via

99
$$K_d = \frac{q_e}{C_e} \setminus * \text{MERGEFORMAT} (12)$$

100
$$\ln K_d = -\frac{\Delta H}{RT} + \frac{\Delta S}{R} \setminus * \text{ MERGEFORMAT (13)}$$

$$\Delta G = \Delta H + T \Delta S \quad \mathsf{NERGEFORMAT} (14)$$

102 Among them, K_d denotes the thermodynamic coefficient, and T denotes sorption temperature (K).

Fig. S1: XRD spectrum of MXene and Ti₃AlC₂ phase

Figure.S4: Selectivity of Pb²⁺ and MB adsorption before adsorption (a), on Fe₂O₃/BC/MXene (b), BC/Fe₂O₃ (c), and
 BC/MXene (d)

Figure.S5: Reusability of Fe₂O₃/BC/MXene composite for sorption of Pb²⁺ (a) and MB (b)

117 Figure.S6: XPS survey patterns of Fe₂O₃/BC/MXene composite after adsorption of lead (a-b) and MB (c)

Figure.S7: O 1 s XPS spectra before adsorption and after adsorption of Pb²⁺, MB, and Pb²⁺-MB (a). C 1 s XPS spectra before adsorption and after adsorption of Pb²⁺, MB, and Pb²⁺-MB (b). N 1 s XPS spectra before adsorption and after adsorption of Pb²⁺, MB, and Pb²⁺-MB (c).

Table.S1: PFO, PSO, Elovich, and Bangham kinetic models' parameters

Kinetic models used	Lead concentrations (mg L ⁻¹)	Variable				
		ln(q _e -q _t)	K ₁	R ²	χ2	SSE
	Lea	ad (II)		I		
PFO	15	0.237	0.935	0.8950	4.768	8.587
	30	7.905	1.035	0.9326	9.250	16.025
	45	8.091	1.650	0.8791	15.255	22.291

PFO	15	0.203	0.713	0.8521	2.396	3.985
	30	4.369	0.906	0.9183	6.575	8.577
	45	8.091	1.650	0.8791	13.951	15.368
	Le	ad (II)	1			
PSO	15	181.088	0.999	1.000	0.425	0.789
	30	179.631	0.073	0.999	0.634	0.923
	45	66.476	0.059	0.999	0.991	0.992
		MB				
PSO	15	180.233	0.917	0.997	0.163	0.130
	30	153.891	0.063	0.993	0.149	0.228
	45	47.568	0.031	0.993	0.173	0.421
I	Le	ad (II)				
Elovich		β _{El}	α _{El}	R ²	χ2	SSE
	15	0.1327	$\begin{array}{c} 1.831 \times \\ 10^{28} \end{array}$	0.996	9.816	10.990
	30	0.0635	$\begin{array}{c} 4.608 \times \\ 10^9 \end{array}$	0.980	26.558	14.584
	45	0.0356	$\begin{array}{c} 2.9 \ 7 \times \\ 10^5 \end{array}$	0.926	44.002	59.287
I						

Elovich		β _{El}	α _{El}	R ²	χ2	SSE
	1.5	0.10(7	1.501	0.001	0.267	10.050
	15	0.1067	1.531 ×	0.981	8.367	10.058
			10 ²⁵			
	20	0.0425	2 256 ×	0.073	24 458	25 582
	50	0.0425	3.230 ^	0.975	24.430	55.565
			107			
	45	0.0219	1.95 ×	0.918	21.781	31.177
			104			
	Le	ad (II)				
Bangham		К.	a	P ²	~2	SSE
Dangnam		nj	u	K		SSE
	15	523.65	0.0739	0.969	7.905	11.208
	30	613.51	0.3215	0.921	28.318	39.986
	/15	640.83	0.0751	0.955	55 258	68 828
		0-0.05	0.0751	0.755	55.250	00.020
	-	MB				
				I		
Bangham	15	460.39	0.0522	0.952	5.571	8.890
	30	593.85	0.2293	0.939	19 507	22 515
	50	575.05	0.2275	0.757	17.307	22.313
	45	624.47	0.0425	0.946	25.879	31.025

Table .S2: The fitting parameters of IPD

Adsorbent	R ²	C (mg/g)	K (mg/g-min ^{0.5})		
cons (mg					
L-1)					
Lead (II)					

	1R ²	2R ²	3R ²	C ₁	C ₂	C ₃	K ₁	K ₂	K ₃
15 mg L ⁻¹	1.0	0.81	0.76	9.65	8.67	7.36	0.39	0.27	0.22
30 mg L ⁻¹	1.0	0.96	0.61	15.32	9.90	8.06	0.35	0.19	0.15
45 mg L ⁻¹	1.0	0.98	0.59	16.43	10.76	9.62	0.29	0.14	0.07
					MB				
15 mg L ⁻¹	1.0	0.79	0.70	8.19	7.39	5.03	0.37	0.30	0.24
30 mg L ⁻¹	1.0	0.93	0.57	13.61	11.31	8.61	0.36	0.15	0.13
45 mg L ⁻¹	1.0	0.96	0.49	14.90	10.69	6.62	0.29	0.11	0.09

Table.S3: Adsorption isotherm parameters of Pb²⁺and MBadsorption time on Fe₂O₃/BC/Mxene

Isothermal model	Para meters	293 K	303 K	313K				
Lead (II)								
Langmuir	$q_{m \exp}(mg g^{-1})$	1003	625	325				
	$q_{m cal} (mg g^{-1})$	992.76	623.37	319.06				
	KL	0.065	0.041	0.033				
	R ²	0.999	0.997	0.995				
	χ2	1.18	2.07	4.62				
	SSE	3.06	4.25	5.51				
MB								
Langmuir	$q_{m exp} (mg g^{-1})$	995	565	300				

	$q_{m cal} (mg g^{-1})$	899.03	562.91	296.88
	K _L	0.055	0.036	0.017
	R ²	0.998	0.996	0.993
	χ2	2.72	3.68	6.90
	SSE	4.81	6.37	8.02
		Lead (II)		
Freundlich				
	$K_{F exp} (mg g^{-1})$	820	626	419
	$K_{F cal} (mg g^{-1})$	809.41	600.05	401.99
	n	3.68	3.39	3.27
	R ²	0.853	0.846	0.839
	χ2	7.27	13.00	25.68
	SSE	10.21	19.68	31.01
		MB		
Freundlich				
	$K_{F exp}(mg g^{-1})$	805	515	320
	$K_{F cal} (mg g^{-1})$	791.74	507.61	311.54
	n	3.55	3.31	2.99
	R ²	0.816	0.879	0.799
	χ2	11.62	15.85	39.25

	SSE	14.33	21.84	45.39				
Lead (II)								
Temkin								
	K _T	783.09	608.58	497.69				
	В	0.856	0.456	0.409				
	R ²	0.975	0.859	0.921				
	χ2	19.56	27.35	44.28				
	SSE	33.45	56.24	70.69				
	1	MB		I				
Temkin								
	K _T	701.04	553.18	398.99				
	В	0.789	0.398	0.307				
	R ²	0.935	0.813	0.889				
	χ2	25.17	38.69	51.28				
	SSE	33.45	56.24	70.69				

Table.S4: Thermodynamic parameters of Pb²⁺and MB adsorption on Fe₂O₃/BC/MXene

Temperature (K)	∆G(KJ mol ⁻¹)	∆H(KJ mol ⁻¹ K ⁻¹)	∆S(K mol ⁻¹)			
Lead (II)						
393 K	-8.362	-39.319	-0.110			

303 K	-5.395		
313 K	-3.287		
		MB	
393 K	-6.929	-25.179	-0.103
303 K	4.081		
313 K	-2.731		

132 Table.S5: Selectivity parameters of Pb²⁺ and MB adsorption on Fe₂O₃/BC/MXene, BC/Fe₂O₃ (c), and BC/MXene

	Fe ₂ O ₃ /BC/MXene composite		BC/F _e 2O ₃ .		BC/MXene	
Heavy metals ion	K _d (mL g ⁻¹)	K	K _d (mL g ⁻¹)	K	K _d (mL g ⁻¹)	K
Pb (II)	19303.88	-	743.50		355.89	-
MB	16976.03	-	556.81	-	237.59	-
Mg (II)	80.43	230.8	80.39	11.28	32.02	54.80
Ni(I)	298.6	51.01	389.87	3.99	177.15	89.63
Cu (II)	3.75	6127.85	40.62	19.36	23.50	75.38
Cd (II)	176.09	100.21	7.52	141.73	85.38	133.90
Li (I)	19.51	985.67	41.52	23.63	102.61	3.63

133

134 References

135 1 F. Cao and J. Shen, J. Chem. Eng. Data, 2019, 64, 5622–5629.

- 136 2 Y. Huang, H. Zheng, X. Hu, Y. Wu, X. Tang, Q. He and S. J. J. of H. M. Peng, *J. Hazard*.
 137 *Mater.*, 2022, **422**, 126856.
- 138 3 M. Ghaedi, A. Ansari, F. Bahari, A. M. Ghaedi and A. Vafaei, Spectrochim. Acta Part A
- 139 *Mol. Biomol. Spectrosc.*, 2015, **137**, 1004–1015.